问答题设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b(其中a、b都是非负常数),c是(0,1)内任一点。 (1)写出f(x)在点x=c处带拉格朗日余项的一阶泰勒公式; (2)证明:|f′(c)|<2a+b/2。
问答题
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b(其中a、b都是非负常数),c是(0,1)内任一点。 (1)写出f(x)在点x=c处带拉格朗日余项的一阶泰勒公式; (2)证明:|f′(c)|<2a+b/2。
参考解析
解析:
暂无解析
相关考题:
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上 A.A当f'(x)≥0时,f(x)≥g(x)B.当f'(x)≥0时,f(x)≤g(x)C.当f"(x)≥0时,f(x)≥g(x)D.当f"(x)≥0时,f(x)≤g(x)
设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 A.Af(0)>1,f"(0)>0B.f(0)>1,f"(0)C.f(0)0D.f(0)
设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?A、f″(x)+f′(x)=0B、f″(x)-f′(x)=0C、f″(x)+f(x)=0D、f″(x)-f(x)=0
设f(x)在(-∞,+∞)二阶可导,f′(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值()?A、x=x0是f(x)的唯一驻点B、x=x0是f(x)的极大值点C、f″(x)在(-∞,+∞)恒为负值D、f″(x0)≠0
问答题设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f″(x)|≤b(其中a、b都是非负常数),c是(0,1)内任一点。 (1)写出f(x)在点x=c处带拉格朗日余项的一阶泰勒公式; (2)证明:|f′(c)|<2a+b/2。
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af″(x)+f(x)=0Bf′(x)+f(x)=0Cf″(x)+f′(x)=0Df″(x)+f′(x)+f(x)=0
单选题设f(x),g(x)具有任意阶导数,且满足f″(x)+f′(x)g(x)+f(x)x=ex-1,f(0)=1,f′(0)=0。则( )。Af(0)=1为f(x)的极小值Bf(0)=1为f(x)的极大值C(0,f(0))为曲线y=f(x)的拐点D由g(x)才能确定f(x)的极值或拐点
单选题设函数f(x)在区间[1,+∞)内二阶可导,且满足条件f(1)=f′(1)=0,x>1时f″(x)<0,则g(x)=f(x)/x在(1,+∞)内( )。A曲线是向上凹的B曲线是向上凸的C单调减少D单调增加
单选题设f(x)的二阶导数存在,且f′(x)=f(1-x),则下列式中何式可成立()?Af″(x)+f′(x)=0Bf″(x)-f′(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0
问答题设f(x)在闭区间[0,c]上连续,其导数f′(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中a,b满足条件0≤a≤b≤a+b≤c。
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af′(x)+f(x)=0Bf′(x)-f(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0