单选题已知函数的全微分df(x,y)=(3x2+4xy-y2+1)dx+(2x2-2xy+3y2-1)dy,则f(x,y)等于( )。Ax3+2x2y-xy2+y3+x-y+CBx3-2x2y+xy2-y3+x-y+CCx3+2x2y-xy2+y3-x+y+CDx3+2xy2-xy2+y3+x-y+C
单选题
已知函数的全微分df(x,y)=(3x2+4xy-y2+1)dx+(2x2-2xy+3y2-1)dy,则f(x,y)等于( )。
A
x3+2x2y-xy2+y3+x-y+C
B
x3-2x2y+xy2-y3+x-y+C
C
x3+2x2y-xy2+y3-x+y+C
D
x3+2xy2-xy2+y3+x-y+C
参考解析
解析:
由题意知∂f/∂x=3x2+4xy-y2+1,两边对x求积分,则f=∫(∂f/∂x)dx=x3+2x2y-xy2+x+C(y),∂f/∂y=2x2-2xy+C′(y),又因为∂f/∂y=2x2-2xy+3y2-1,故C′(y)=3y2-1,进而有C(y)=y3-y+C,f=x3+2x2y-xy2+y3+x-y+C。故应选(A)。
由题意知∂f/∂x=3x2+4xy-y2+1,两边对x求积分,则f=∫(∂f/∂x)dx=x3+2x2y-xy2+x+C(y),∂f/∂y=2x2-2xy+C′(y),又因为∂f/∂y=2x2-2xy+3y2-1,故C′(y)=3y2-1,进而有C(y)=y3-y+C,f=x3+2x2y-xy2+y3+x-y+C。故应选(A)。
相关考题:
设f(x),f'(x)为已知的连续函数,则微分方程y'十f'(x)y=f(x)f'(x)的通解是:A. y=f(x)+ce-f(x) B. y= f(x)ef(x) -ef(x) +cC. y=f(x)-1+ce-f(x) D. y=f(x)-1+cef(x)
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af″(x)+f(x)=0Bf′(x)+f(x)=0Cf″(x)+f′(x)=0Df″(x)+f′(x)+f(x)=0
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1/5B1/7C-1/7D-1/5
单选题已知函数的全微分df(x,y)=(3x2+4xy-y2+1)dx+(2x2-2xy+3y2-1)dy,则f(x,y)等于( )。Ax3+2x2y-xy2+y3+x-y+CBx3-2x2y+xy2-y3+x-y+CCx3+2x2y-xy2+y3-x+y+CDx3+2xy2-xy2+y3+x-y+C
单选题(2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()Ay=c(y1-y2)By=c(y1+y2)Cy=y1+c(y1+y2)Dy=y1+c(y1-y2)
单选题设函数y=y(x)由方程y=f(x2+y2)+f(x+y)所确定,且y(0)=2,其中f是可导函数,f′(2)=1/2,f′(4)=1,则dy/dx|x=0=( )。A1B-1C1/7D-1/7
单选题设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于( )。A(xsinx)/2Bx3-x2/2Cx2exD(xsinx)/2+C1cosx+C2sinx
单选题设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=( )。A-e-x/2+(cosx)/2+(sinx)/2Bx3-x2/2+1Cx2ex-2D(xcosx)/2+C1cosx+C2sinx
单选题设方程x2+y2+z2=4z确定可微函数z=z(x,y),则全微分dz等于( )。[2014年真题]A(ydx+xdy)/(2-z)B(xdx+ydy)/(2-z)C(dx+dy)/(2+z)D(dx-dy)/(2-z)
单选题若已知df(x,y)=(x2+2xy-y2)dx+(x2―2xy―y2)dy,则f(x,y)=( )。Ax3/3-x2y+xy2-y3/3Bx3/3-x2y-xy2-y3/3Cx3/3+x2y+xy2-y3/3Dx3/3+x2y-xy2-y3/3+C
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af′(x)+f(x)=0Bf′(x)-f(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0