单选题设u=f(x+y,xz)有二阶连续偏导数,则∂2u/∂x∂z=(  )。Af2′+xf11′+(x+z)f12″+xzf22″Bxf12″+xzf22″Cf2′+xf12″+xzf22″Dxzf22″

单选题
设u=f(x+y,xz)有二阶连续偏导数,则∂2u/∂x∂z=(  )。
A

f2′+xf11′+(x+z)f12″+xzf22

B

xf12″+xzf22

C

f2′+xf12″+xzf22

D

xzf22


参考解析

解析:
由u=f(x+y,xz),可得∂u/∂x=f1′·1+zf2′,则∂2u/(∂x∂z)=f11″·0+f12″·x+f2′+z(f21″·0+f22″·x)=xf12″+f2′+xzf22″。

相关考题:

设关系模式R,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指()。 设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指()。A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵B.若X→Y,X→Z,则X→YZ为F所蕴涵C.若X→Y,WY→Z,则XW→Z为F所蕴涵D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵

A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,y)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(x,y)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

设z=f(u,v)具有一阶连续偏导数,其中u=xy,v=x2+y2,A.xfu'+yfv' B. xfu'+2yfv'C.yfu'+2xfv' D.2xfu'+2yfv'

对于二元函数z=f(x,y),下列有关偏导数与全微分关系的命题中,哪一个是正确的?A.偏导数不连续,则全微分必不存在 B.偏导数连续,则全微分必存在 C.全微分存在,则偏导数必连续 D.全微分存在,而偏导数不一定存在

设关系模式R<U,F>,其中U为属性集,F是U上的一组函数依赖,那么Armstrong公理系统的伪传递律是指( )。A.若X→Y,Y→Z为F所蕴涵,则X→Z为F所蕴涵B.若X→Y,X→Z,则X→YZ为F所蕴涵C.若X→Y,WY→Z,则XW→Z为F所蕴涵D.若X→Y为F所蕴涵,且Z?U,则XZ→YZ为F所蕴涵

设 , 其中f具有二阶连续偏导数, 求

设 ,其中 具有二阶连续偏导数 具有二阶连续导数,求

设函数f(μ,ν)具有二阶连续偏导数,z=f(x,xy),则=________.

设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求

设函数f(u,ν)具有2阶连续偏导数,.

设函数f(u)具有二阶连续导数,z=f(e^xcosy)满足    若f(0)=0,f'(0)=0,求f(u)的表达式.

设f(x)具有二阶导数,y=f(x2),则的值为()。

对于二元函数z=f(x,y),下列有关偏导数与全微分关系中正确的命题是()。A、偏导数存在,则全微分存在B、偏导数连续,则全微分必存在C、全微分存在,则偏导数必连续D、全微分存在,而偏导数不一定存在

下列结论正确的是().A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

下列结论正确的是().A、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

填空题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。

问答题设z=f(u),而u=u(x,y)满足u=y+xφ(u)。若f和φ有连续导数,u存在偏导数,且xφ′(u)≠1,证明:∂z/∂x=φ(u)∂z/∂y。

单选题设u=f(x+y,xz)有二阶连续偏导数,则∂2u/∂x∂z=(  )。Af2′+xf11′+(x+z)f12″+xzf22″Bxf12″+xzf22″Cf2′+xf12″+xzf22″Dxzf22″

单选题设z=φ(x2-y2),其中φ有连续导数,则函数z满足(  )。Ax∂z/∂x+y∂z/∂y=0Bx∂z/∂x-y∂z/∂y=0Cy∂z/∂x+x∂z/∂y=0Dy∂z/∂x-x∂z/∂y=0

单选题设函数u=u(x,y)满足∂2u/∂x2-∂2u/∂y2=0及条件u(x,2x)=x,ux′(x,2x)=x2,u有二阶连续偏导数,则uxx″(x,2x)=(  )。A4x/3B-4x/3C3x/4D-3x/4

单选题设z=yφ(x/y),其中φ(u)具有二阶连续导数,则∂2z/(∂x∂y)等于(  )。[2017年真题]A(1/y)φ″(x/y)B(-x/y2)φ″(x/y)C1Dφ′(x/y)-(x/y)φ″(x/y)

单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(  )。A只能确定一个具有连续偏导数的隐函数z=z(x,y)B可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

单选题设f有二阶偏导数,z=f(xy),则∂2z/∂x∂y等于(  )。Ayf″+f′Bxy2f″Cxyf′f″Df′+xyf″

单选题对于二元函数z=f(x,y),下列有关偏导数与全微分关系中正确的命题是()。A偏导数存在,则全微分存在B偏导数连续,则全微分必存在C全微分存在,则偏导数必连续D全微分存在,而偏导数不一定存在

问答题若函数f(x,y,z)恒满足关系式f(tx,ty,tz)=tkf(x,y,z)就称为k次齐次函数,验证k次齐次函数满足关系式(其中f存在一阶连续偏导数)x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。

问答题设z=f(x2-y2,exy),其中f具有连续二阶偏导数,求∂z/∂x,∂z/∂y。

单选题对于二元函数z=f(x,y),下列有关偏导数与全微分关系的命题中,哪一个是正确的()?A偏导数不连续,则全微分必不存在B偏导数连续,则全微分必存在C全微分存在,则偏导数必连续D全微分存在,而偏导数不一定存在

单选题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=(  )。Af2′+f12″+xyf22″Bf2′+f12″+xf22″Cf2′+xyf12″+xyf22″Df2′+xf12″+xyf22″