设函数f(μ,ν)具有二阶连续偏导数,z=f(x,xy),则=________.
设函数f(μ,ν)具有二阶连续偏导数,z=f(x,xy),则=________.
参考解析
解析:
相关考题:
函数厂(x)具有连续的二阶导数,且f″(0)≠0,则x=0( )。A.不是函数f(x)的驻点B.一定是函数f(x)的极值点C.一定不是函数f(x)的极值点D.是否为函数f(x)的极值点,还不能确定
A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,y)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(x,y)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 A.Af(0)>1,f"(0)>0B.f(0)>1,f"(0)C.f(0)0D.f(0)
对于二元函数z=f(x,y),下列有关偏导数与全微分关系中正确的命题是()。A、偏导数存在,则全微分存在B、偏导数连续,则全微分必存在C、全微分存在,则偏导数必连续D、全微分存在,而偏导数不一定存在
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af″(x)+f(x)=0Bf′(x)+f(x)=0Cf″(x)+f′(x)=0Df″(x)+f′(x)+f(x)=0
单选题设u=f(x+y,xz)有二阶连续偏导数,则∂2u/∂x∂z=( )。Af2′+xf11′+(x+z)f12″+xzf22″Bxf12″+xzf22″Cf2′+xf12″+xzf22″Dxzf22″
单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( )。A只能确定一个具有连续偏导数的隐函数z=z(x,y)B可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
单选题对于二元函数z=f(x,y),下列有关偏导数与全微分关系中正确的命题是()。A偏导数存在,则全微分存在B偏导数连续,则全微分必存在C全微分存在,则偏导数必连续D全微分存在,而偏导数不一定存在
问答题若函数f(x,y,z)恒满足关系式f(tx,ty,tz)=tkf(x,y,z)就称为k次齐次函数,验证k次齐次函数满足关系式(其中f存在一阶连续偏导数)x∂f/∂x+y∂f/∂y+z∂f/∂z=kf(x,y,z)。
单选题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=( )。Af2′+f12″+xyf22″Bf2′+f12″+xf22″Cf2′+xyf12″+xyf22″Df2′+xf12″+xyf22″
单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为( )。Af′(x)+f(x)=0Bf′(x)-f(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0