填空题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。

填空题
设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。

参考解析

解析:
∂z/∂x=f1′+yf2′,∂2z/(∂x∂y)=f11″·0+xf12″+f2′+yf22″·x=xf12″+f2′+xyf22

相关考题:

下列结论正确的是( ).A.x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B.z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C.z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D.z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,y)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(x,y)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

设z=f(u,v)具有一阶连续偏导数,其中u=xy,v=x2+y2,A.xfu'+yfv' B. xfu'+2yfv'C.yfu'+2xfv' D.2xfu'+2yfv'

设函数f(μ,ν)具有二阶连续偏导数,z=f(x,xy),则=________.

设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求

设函数,(u)可导,z=f(sin y-sin x)+xy,则=__________.

已知函数f(x,y)具有二阶连续偏导数,且,其中D={(x,y)|0≤x≤1,0≤y≤1),计算二重积分.

设f(x)具有二阶导数,y=f(x2),则的值为()。

若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微

若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()A、连续B、偏导数存在C、偏导数连续D、切平面存在

对于二元函数z=f(x,y),下列有关偏导数与全微分关系中正确的命题是()。A、偏导数存在,则全微分存在B、偏导数连续,则全微分必存在C、全微分存在,则偏导数必连续D、全微分存在,而偏导数不一定存在

下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

设z=f(x2+y2),其中f具有二阶导数,则等于().A、2f’(x2+y2)B、4x2f"(x2+y2)C、2’(x2+y2)+4x2f"(x2+y2)D、2xf"(x2+y2)

下列结论正确的是().A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

下列结论正确的是().A、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件C、z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

问答题设z=f(u),而u=u(x,y)满足u=y+xφ(u)。若f和φ有连续导数,u存在偏导数,且xφ′(u)≠1,证明:∂z/∂x=φ(u)∂z/∂y。

单选题设z=f(x2+y2),其中f具有二阶导数,则等于().A2f’(x2+y2)B4x2f(x2+y2)C2’(x2+y2)+4x2f(x2+y2)D2xf(x2+y2)

单选题设u=f(x+y,xz)有二阶连续偏导数,则∂2u/∂x∂z=(  )。Af2′+xf11′+(x+z)f12″+xzf22″Bxf12″+xzf22″Cf2′+xf12″+xzf22″Dxzf22″

填空题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。

填空题设z=f(xy,x/y)+g(y/x),其中f、g均可微,则∂z/∂x=____。

单选题设z=φ(x2-y2),其中φ有连续导数,则函数z满足(  )。Ax∂z/∂x+y∂z/∂y=0Bx∂z/∂x-y∂z/∂y=0Cy∂z/∂x+x∂z/∂y=0Dy∂z/∂x-x∂z/∂y=0

单选题设z=yφ(x/y),其中φ(u)具有二阶连续导数,则∂2z/(∂x∂y)等于(  )。[2017年真题]A(1/y)φ″(x/y)B(-x/y2)φ″(x/y)C1Dφ′(x/y)-(x/y)φ″(x/y)

单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(  )。A只能确定一个具有连续偏导数的隐函数z=z(x,y)B可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

单选题设f有二阶偏导数,z=f(xy),则∂2z/∂x∂y等于(  )。Ayf″+f′Bxy2f″Cxyf′f″Df′+xyf″

问答题设z=f(x2-y2,exy),其中f具有连续二阶偏导数,求∂z/∂x,∂z/∂y。

单选题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=(  )。Af2′+f12″+xyf22″Bf2′+f12″+xf22″Cf2′+xyf12″+xyf22″Df2′+xf12″+xyf22″