设A是n阶矩阵,若|A|=0,则( )成立A.A的任一列向量是其余列向量的线性组合B.必有一列向量是其余向量的线性组合C.必有两列元素对应成比例D.必有一列元素全为O

设A是n阶矩阵,若|A|=0,则( )成立

A.A的任一列向量是其余列向量的线性组合
B.必有一列向量是其余向量的线性组合
C.必有两列元素对应成比例
D.必有一列元素全为O

参考解析

解析:由A=0,知矩阵A的列向量线性相关,故至少有一列向量是其余列向量的线性组合.

相关考题:

设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。

设A是n阶方阵,若对任意的n维向量x均满足Ax=0,则() A、A=0B、A=EC、r(A)=nD、0r(A)(n)

设A是n阶实对称矩阵,则A有n个()特征值.

设A、B、C均为n阶矩阵,则下列结论或等式成立的是()。 A、(AB)^2=A^2B^2B、若AB=AC且A≠0,则B=CC、((A+B)C)^T=C^T(B^T+A^T)D、若A≠0且B≠0,则AB≠0

设A,B为n阶可逆矩阵,则().

设A,B皆为n阶矩阵,则下列结论正确的是().A.AB=O的充分必要条件是A=O或B-OB.AB≠O的充分必要条件是A≠0且B≠0C.AB=O且r(A)=N,则B=OD.若AB≠0,则|A|≠0或|B|≠0

设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=A.EB.-EC.AD.-A

设A是S×6矩阵,则( )正确。A.若A中所有5阶子式均为0,则秩R(A)=4B.若秩R(A)=4,则A中5阶子式均为0C.若秩R(A)=4,则A中4阶子式均非0D.若A中存在不为0的4阶子式,则秩尺(A)=4

设A为n阶矩阵,A^2=A,则下列结论成立的是().A.A=OB.A=EC.若A不可逆,则A=OD.若A可逆,则A=E

N阶矩阵A经过若干次初等变换化为矩阵B,则().A.|A|=|B|B.|A|≠|B|C.若|A|=0则|B|=0D.若|A|>0则|B|>0

设n阶矩阵A与B等价, 则必须

设A为n阶矩阵,且|A|=0,≠0,则AX=0的通解为_______.

设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。

设A是m×n阶矩阵,若A^TA=O,证明:A=0.

设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.

设a为N阶可逆矩阵,则( ).《》( )

设 A为 n 阶方阵,B是 A 经过若干次初等行变换得到的矩阵,则下列结论正确的是( )。A.|A|=|B|B.|A|≠|B|C.若|A|=0,则一定有 |B|=0D.若 |A|> 0,则一定有 |B|> 0

设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则( )。A.E-A不可逆,E+A不可逆B.E—A不可逆。E+A可逆C.E—A可逆。E+A可逆D.E—A可逆。E十A不可逆

设A为n阶方阵,A*是A的伴随矩阵,则||A|A*|等于( ).

设A是5×6矩阵,则()正确。A、若A中所有5阶子式均为0,则秩RA.=4B、B.若秩R=4,则A中5阶子式均为0C、C.若秩R=4,则A中4阶子式均不为0D、D.若A中存在不为0的4阶子式,则秩R=4

填空题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=____。

单选题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=(  )。A0B1C2D3

单选题设A是5×6矩阵,则()正确。A若A中所有5阶子式均为0,则秩RA.=4BB.若秩R=4,则A中5阶子式均为0CC.若秩R=4,则A中4阶子式均不为0DD.若A中存在不为0的4阶子式,则秩R=4

填空题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A-2B-1C0D1

单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=(  )。A4B2C-1D1

单选题设A为n阶方阵,B是A经过若干次矩阵的初等变换后所得到的矩阵,则有(  )。A|A|=|B|B|A|≠|B|C若|A|=0,则一定有|B|=0D若|A|>0,则一定有|B|>0