若A是____,则A必为方阵。 A.对称矩阵B.可逆矩阵C.n阶矩阵的转置矩阵D.线性方程组的系数矩阵
n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数
设A,B均为n阶可逆矩阵,求证:(AB)*=B*A*。
设A,B都是N阶矩阵,且存在可逆矩阵P,使得AP=B,则().A.A,B合同B.A,B相似C.方程组AX=0与BX=0同解D.r(A)=r(B)
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于( )。A.-A.*B.A.*C.(-1)nA.*D.(-1)n-1A.*
设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值B.A是可逆矩阵C.A存在n个线性无关的特征向量D.A一定为n阶实对称矩阵
设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵
设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则
设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同B.矩阵A的特征值都是实数C.存在可逆矩阵P,使P^-1AP为对角阵D.存在正交阵Q,使Q^TAQ为对角阵
设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且
设A为n阶正定矩阵,证明:对任意的可逆矩阵P,P^TAP为正定矩阵.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.
设A是n阶矩阵,E+A是可逆矩阵,记,若A按足条件,证明是反对称矩阵。
设A是3阶矩阵,P=(a1,a2,a3)是3阶可逆矩阵,且P-1AP=
设A是一个m×n矩阵,证明:矩阵A的行空间维数等于它的列空间维数。
设A为3阶矩阵.P为3阶可逆矩阵,且A.B.C.D.
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)n等于( )。A. -An B. An C. (-1)nAn D. (-1)n-1An
设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A、等价B、相似C、合同D、正交
可以产生由Z2上n阶线性常系数齐次递推关系式的矩阵A称为什么?()A、乘方矩阵B、列矩阵C、单位矩阵D、生成矩阵
设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A、-A*B、A*C、(-1)nA*D、(-1)n-1A*
单选题设A,B都是n阶矩阵,若有可逆矩阵P使得P-1AP=B,则称矩阵A与矩阵B()。A等价B相似C合同D正交
单选题设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。A-A*BA*C(-1)nA*D(-1)n-1A*
单选题可以产生由Z2上n阶线性常系数齐次递推关系式的矩阵A称为什么?()A乘方矩阵B列矩阵C单位矩阵D生成矩阵