教材习题 3.4 第 9 题,题目如下: 设X与Y独立同分布,共同分布为N(0,1), 求概率P(X+Y|≤|X-Y|).

教材习题 3.4 第 9 题,题目如下: 设X与Y独立同分布,共同分布为N(0,1), 求概率P(X+Y|≤|X-Y|).


参考答案和解析
B

相关考题:

相互独立的随机变量X和Y都服从正态分布N(1,1),则() A、P(X+Y≤0)=1/2B、P(X-Y≤0)=1/2C、P(X+Y≤1)=1/2D、P(X-Y≤1)=1/2

两独立随机变量X和Y都服从正态分布,且X~N(3,4),Y~N(2,9)求D(X+Y)=()。

设X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y服从的分布为() A、X+Y服从N(0,1)B、X+Y不服从正态分布C、X+Y~X2(2)D、X+Y也服从正态分布

与相互独立,其概率分布分别为求(1)X与Y的联合分布(2)P(X+Y=1)(3)P(X+Y≠1)

设X~N(0,1),y=X^2,求y的概率密度函数.

设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数

设X,y的概率分布为X~,Y~,且P(XY=0)=1.  (1)求(X,Y)的联合分布;(2)X,Y是否独立?

设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.

设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2,与y=0所围成的三角形区域.  (Ⅰ)求X的概率密度fx(x);  (Ⅱ)求条件概率密度.

设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

设X,Y相互独立,且X~B,Y~N(0,1),令U=max{X,Y},求P{1

设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;  (Ⅱ)Y的概率密度;  (Ⅲ)概率P{X+Y>1}.

设随机变量X和Y的联合分布是正方形G={(x,y)|1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X-Y|的概率密度p(u).

设二维离散型随机变量(X,Y)的概率分布为    (Ⅰ)求P{X=2Y);  (Ⅱ)求Cov(X-Y,Y).

设随机变量X与Y的概率分布分别为,  且P{X^2=Y^2}=1.  (Ⅰ)求二维随机变量(X,Y)的概率分布;  (Ⅱ)求Z=XY的概率分布;  (Ⅲ)求X与Y的相关系数ρXY.

设随机变量X的概率密度为令随机变量,  (Ⅰ)求Y的分布函数;  (Ⅱ)求概率P{X≤Y}.

设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为 A.A0B.1C.2D.3

设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0  (Ⅰ)求Z的概率密度;  (Ⅱ)p为何值时,X与Z不相关;  (Ⅲ)X与Z是否相互独立?

设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.  (Ⅰ)求Cov(X,Z);  (Ⅱ)求Z的概率分布.

设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为  (Ⅰ)求P{Y≤EY};  (Ⅱ)求Z=X+Y的概率密度.

设随机变量X与Y相互独立且都服从区间[0,1]上的均匀分布,则下列随机变量中服从均匀分布的有()。A、X2B、X+YC、(X,Y)D、X-Y

设X,Y独立同分布,记U=X-Y,V=X+Y,则U与V满足().A、不独立B、独立C、相关系数不为0D、相关系数为0

设X服从0—1分布,P=0.6,Y服从λ=2的泊松分布,且X,Y独立,则X+Y().A、服从泊松分布B、仍是离散型随机变量C、为二维随机向量D、取值为0的概率为0

设随机变量X和Y相互独立,且X~N(0,1),Y~N(1,1),则()A、P{X+Y≤0}=0.5B、P{X+Y≤1}=0.5C、P{X-Y≤0}=0.5D、P{X-Y≤1}=0.5

设随机变量X,Y相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是()。A、XYB、(X,Y)C、X—YD、X+Y

设X,Y相互独立,且都服从标准正态分布N(0,1),令Z=X2+Y2则Z服从的分布是().A、N(0,2)分布B、单位圆上的均匀分布C、参数为1的瑞利分布D、N(0,1)分布

单选题设两个相互独立的随机变盘X和Y分别服从于N(0,1)和N(1,12),则(  ).AP{X+Y≤0}=1/2BP{X+Y≤1}=1/2CP{X-Y≤0}=1/2DP{X-Y≤1}=1/2

问答题设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.