函数在一点可微的充分必要条件是函数在这一点存在两个偏导数

函数在一点可微的充分必要条件是函数在这一点存在两个偏导数


参考答案和解析
BD

相关考题:

二元函数f(x,y)在点(x ,y)偏导数存在是f(x,y)在该点连续的() A、充分必要条件B、必要而非充分条件C、充分而非必要条件D、既非充分又非必要条件

函数f(x,y)在点P0(x0,y0)处有一阶偏导数是函数在该点连续的(  )。A、必要条件B、充分条件C、充分必要条件D、既非充分又非必要条件

设有三元方程 ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

函数f(x,y)在点P0(x0,y0)处的一阶偏导数存在是该函数在此点可微分的(  )。 A. 必要条件 B. 充分条件 C. 充分必要条件 D. 既非充分条件也非必要条件

z=f(x,y)在一阶偏导数存在是该函数在此点可微的什么条件?A.必要条件 B.充分条件C.充要条件 D.无关条件

函数z=f(x,y)在点(x,y)处的偏导数存在是函数在该点可微的()A.必要条件B.充分条件C.既非必要又非充分条件D.充要条件

A.两个偏导数存在,函数不连续B.两个偏导数不存在,函数连续C.两个偏导数存在,函数也连续,但函数不可微D.可微

z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件?A.必要条件B.充分条件C.充要条件D.无关条件

z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件()?A、必要条件B、充分条件C、充要条件D、无关条件

多元函数在某点处的偏导数刻划了函数在这点的变化率。

函数在某一点处的导数的几何意义是:函数曲线在这点处的切线。

若一点是函数的拐点,则在这点的左右函数的二阶导数要反号。

多元函数所有偏导数都存在,则这个函数必可微。

函数在一点处的左右极限都存在,则函数在这一点的极限存在。

若函数φ(z)在复平面内任意一点的导数都存在,则称这个函数在复平面上什么?()A、解析B、可导C、可分D、可积

由于函数极值点的必要条件是函数在这一点的梯度值的模为(),因此当迭代点的函数梯度的模已充分小时,则认为迭代可以终止。

由于函数极值点的必要条件是函数在这一点的()的模为零,因此当迭代点的函数梯度的模已充分小时,则认为迭代可以终止。

判断题多元函数所有偏导数都存在,则这个函数必可微。A对B错

单选题若函数φ(z)在复平面内任意一点的导数都存在,则称这个函数在复平面上什么?()A解析B可导C可分D可积

单选题二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。A充分条件B必要条件C充要条件D以上都不是

判断题函数在某一点处的导数的几何意义是:函数曲线在这点处的切线。A对B错

判断题若一点是函数的拐点,则在这点的左右函数的二阶导数要反号。A对B错

填空题由于函数极值点的必要条件是函数在这一点的()的模为零,因此当迭代点的函数梯度的模已充分小时,则认为迭代可以终止。

单选题z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件()?A必要条件B充分条件C充要条件D无关条件

单选题设三元函数xy-zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(  )。A只能确定一个具有连续偏导数的隐函数z=z(x,y)B可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)

填空题由于函数极值点的必要条件是函数在这一点的梯度值的模为(),因此当迭代点的函数梯度的模已充分小时,则认为迭代可以终止。

单选题函数 在点 处的一阶偏导数存在是该函数在此点可微分的()。A必要条件B充分条件C充分必要条件D既非充分条件也非必要条件

判断题函数在一点处的左右极限都存在,则函数在这一点的极限存在。A对B错