旋转曲面:x2 -y2-z2=1是下列哪个曲线绕何轴旋转所得?A. xOy平面上的双曲线绕x轴旋转所得B. xOz平面上的双曲线绕z轴旋转所得C. xOy平面上的橢圆绕x轴旋转所得 D. xOz平面上的椭圆绕x轴旋转所得

旋转曲面:x2 -y2-z2=1是下列哪个曲线绕何轴旋转所得?
A. xOy平面上的双曲线绕x轴旋转所得
B. xOz平面上的双曲线绕z轴旋转所得
C. xOy平面上的橢圆绕x轴旋转所得
D. xOz平面上的椭圆绕x轴旋转所得


参考解析

解析:提示:利用平面曲线绕坐标轴旋转生成的旋转曲面方程的特点来确定。例如在yOz平面上的曲线f(y,z) = 0,绕y轴旋转所得曲面方程为绕z轴旋转所得曲面方程为

相关考题:

设曲线y=f(x)上任一点(x,y)处的切线斜率为(y/x)+x2,且该曲线经过点(1,1/2)。(1)求函数y=f(x);(2)求由曲线y= f(x),y=O,x=1所围图形绕x轴旋转一周所得旋转体的体积V。

将xoy面上的曲线y=x2绕y轴旋转一周所得旋转面的方程为()。

由曲线和直线x=1,x=2,y= -1围成的图形,绕直线:y= -1旋转所得旋转体的体积为:

将椭圆绕x轴旋转一周所生成的旋转曲面的方程是:

椭圆x2/a2+y2/b2=1(a>b>0)绕x轴旋转得到的旋转体体积V1与绕y轴旋转得到的旋转体体积V2之间的关系为:A.V1>V2 B.V1﹤V2 C.V1=V2 D.V1=3V2

将双曲线C:绕x轴旋转一周所生成的旋转曲面的方程是(  )。

将椭圆绕χ轴旋转一周所生成的旋转曲面的方程是:

将xoz坐标面上的双曲线分别绕z轴和x轴旋转一周,则所生成的旋转曲面的方程分别为( )。

求曲线y=,直线z=1和z轴所围成的有界平面图形的面积s,及该平面图形绕2轴旋转一周所得旋转体的体积V.

①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S:②求①中的平面图形绕Y轴旋转一周所得旋转体的体积Vy.

求曲线y=x2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积.

设区域D={(x,y)(0≤y≤x2,0≤x≤1),则D绕X轴旋转一周所得旋转体的体积为()

①求在区间(0,π)上的曲线y=sinx与x轴所围成图形的面积S;②求①中的平面图形绕x轴旋转一周所得旋转体的体积Vx.

求直线 绕 轴旋转一周的旋转曲面的方程,并求该曲面与平面所围立体的体积。

设非负函数满足微分方程,当曲线过原点时,其与直线x=1及y=0围成平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积

(1)求直线y=1,曲线L以及y轴围成的平面图形绕y轴旋转一周所得到的的旋转体体积A;(2)假定曲线L绕y轴旋转一周所得到的旋转曲面为S。该旋转曲面作为容器盛满水(水的质量密度(单位体积水的重力)等于1),如果将其中的水抽完,求外力作功W.

将平面曲线y=x2分别绕y轴和x轴旋转一周,所得旋转曲面分别记作S1和S2。(1)在空间直角坐标系中,分别写出曲面S1和S2的方程;(2)求平面y=4与曲面S1。所围成的立体的体积。

将双曲线,绕x轴旋转一周所生成的旋转曲面的方程是( )。

求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.?

设D为曲线y=x2与直线y=x所围成的有界平面图形,求D绕x轴旋转一周所得旋转体的体积V.?

(1)求曲线y=f(x);(2)求由曲线y=f(x),y=0,x=1所围图形绕x轴旋转一周所得旋转体体积.

由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体体积为:()A、(293/60)πB、π/60C、4π2D、5π

CAXA制造J程师软件中关于旋转面建模方法描述错误的是()。A、旋转母线绕旋转轴线旋转可生成旋转曲面B、构造旋转曲面的旋转轴必须是直线C、构造旋转曲面的旋转母线可以是样条线D、构造旋转曲面的旋转轴必须绘制在草图中

旋转曲面x2-y2-z2=1是下列哪个曲线绕何轴旋转所得()?A、xOy平面上的双曲线绕x轴旋转所得B、xOz平面上的双曲线绕z轴旋转所得C、xOy平面上的椭圆绕x轴旋转所得D、xOz平面上的椭圆绕x轴旋转所得

由曲线与直线x=1及x轴所围图形绕y轴旋转而成的旋转体的体积是().A、3/7πB、4/7πC、π/2D、π

单选题方程x2/2+y2/2-z2/3=0表示旋转曲面,它的旋转轴是(  )。Ax轴By轴Cz轴D直线x=y=z

单选题由曲线y=x2/2和直线x=1,x=2,y=-1围成的图形,绕直线y=-1旋转所得旋转体体积为:()A(293/60)πBπ/60C4π2D5π