设总体X 的概率分布为:其中θ (0 (A)1/4(B)1/2(C)2 (D)0

设总体X 的概率分布为:

其中θ (0 (A)1/4(B)1/2(C)2 (D)0


参考解析

解析:解:选A。
E(X) = 0×θ 2 +1× 2θ (1?θ ) + 2θ 2 + 3(1? 2θ ) = 3? 4θ
又样本的均值为 2,即3? 4θ = 2,得θ =1/4。

相关考题:

已知(X,Y)服从均匀分布,联合概率密度函数为设Z=max{X,Y}求Z的概率密度函数fz(z)

设总体X服从均匀分布U(1,θ),则θ的矩估计为(  )。

设随机变量X的分布函数为 则X的概率密度函数f(x)为( )。

设总体X的概率密度为未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:

设总体X的概率密度为而x1,x2,...,xn 是来自总体的样本值,则未知参数θ的最大似然估计值是:

设总体X的概率密度为f(x)=其中θ>-1是未知参数,X1,X2,...Xn是来自总体X的样本,则θ的矩估计量是:

设总体X的概率分布为:其中θ(0A.1/4 B.1/2 C.2 D.0

设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于_______.

设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率

设总体X的概率密度为为总体X的简单随机样本,其样本方差为S^2,则E(S^2)_______.

设X,y的概率分布为X~,Y~,且P(XY=0)=1.  (1)求(X,Y)的联合分布;(2)X,Y是否独立?

设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.

设总体X的概率分布为    其中θ(0)是未知参数,利用总体X的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值,

设总体X的概率分布为是未知参数,用样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值,

设随机变量X的概率密度为令随机变量,  (Ⅰ)求Y的分布函数;  (Ⅱ)求概率P{X≤Y}.

设随机变量X的概率分布为,则EX^2=________.

设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.  (Ⅰ)求Cov(X,Z);  (Ⅱ)求Z的概率分布.

设总体X的概率分布为  其中参数θ∈(0,1)未知.以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数α1,α2,α3,使为θ的无偏估计量,并求T的方差.

设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为  (Ⅰ)求P{Y≤EY};  (Ⅱ)求Z=X+Y的概率密度.

设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).  (Ⅰ)求T的概率密度;  (Ⅱ)确定a,使得aT为θ的无偏估计.

设总体X的概率分布为:其中θ(0A.1/4B.1/2C.2D.0

设随机变量X的分布函数为求随机变量X的概率密度和概率

设总体X服从指数分布,概率密度为( )。

设随机变量X的概率分布为P(X=1)=0.2,P(X=2)=0.3,P(X=3)=0.5,写出其分布函数F(x)。

x-的抽样分布是()。A、样本均值的概率分布B、样本成数的概率分布C、样本均值D、总体均值

问答题9.设离散型随机变量X的分布律为 求x的分布函数,以及概率P{1.50.5}.