设A为三阶方阵,为三维线性无关列向量组,且有求 (I)求A的全部特征值(II)A是否可以对角化?

设A为三阶方阵,为三维线性无关列向量组,且有求 (I)求A的全部特征值(II)A是否可以对角化?


参考解析

解析:

相关考题:

满秩方阵的列向量组线性无关。() 此题为判断题(对,错)。

设A为n阶方阵,则A可对角化的充分必要条件是( ).A. A有n个不同特征值B.A有n个不同特征向量C.A有n个线性元关的特征向量D.IAI≠0。

设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关

设α,β为四维非零列向量,且α⊥β,令A=αβ^T,则A的线性无关特征向量个数为().A.1B.2C.3D.4

若A是m×n矩阵,且m≠n,则当A的列向量组线性无关时,A的行向量组也线性无关

设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.特征值-1,1对应的特征向量正交D.方程组AX=0的基础解系含有一个线性无关的解向量

设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,  对应特征向量为(-1,0,1)^T.  (1)求A的其他特征值与特征向量;  (2)求A.

设α,β为三维非零列向量,(α,β)=3,A=αβ^T,则A的特征值为_______.

设矩阵求矩阵A的列向量组的一个极大无关组, 并把不属于极大无关组的列向量用极大无关组线性表示出来.

设α1,α2,…,αn为n个线性无关的n维列向量,且与向量β正交.证明:向量β为零向量.

设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______.

设线性方程组(I)与(II)有公共的非零解,其中(I)为,(II)有基础解系,求p,t的值和全部公共解

设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.

设二维非零向量α不是二阶方阵A的特征向量.  (1)证明α,Aα线性无关;  (2)若Aα^2+Aα-6α=0,求A的特征值,讨论A可否对角化;

设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.

设矩阵,α1,α2,α3为线性无关的3维列向量组,则向量组Aα1,Aα2,Aα3的秩为_________.

设A为三阶实对称矩阵,A的秩为2,且  (Ⅰ)求A的所有特征值与特征向量;  (Ⅱ)求矩阵A.

设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A

设A为n阶方阵,rank(A)=3A.任意3个行向量都是极大线性无关组B.至少有3个非零行向量C.必有4个行向量线性无关D.每个行向量可由其余n- 1个行向量线性表示

设向量组I:α1α2αr…,可由向量组Ⅱβ1,β2,…βs:线性表示,下列命题正确的是( )。A.若向量组I线性无关.则r≤SB.若向量组I线性相关,则r>sC.若向量组Ⅱ线性无关,则r≤sD.若向量组Ⅱ线性相关,则r>s

设A为4X5矩阵,且A的行向量组线性无关,则( ).《》( )A.A的列向量组线性无关B.方程组AX=b有无穷多解C.方程组AX=b的增广矩阵的任意四个列向量构成的向量组线性无关D.A的任意4个列向量构成的向量组线性无关

设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值是()。A、大于0B、等于0C、大于0D、无法确定

单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是(  ).A向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C向量组α1,…,αm与向量组β1,…,βm等价D矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m

单选题设α,β,γ均为三维列向量,以这三个向量为列构成的3阶方阵记为A,即A=(αβγ)。若α,β,γ所组成的向量组线性相关,则|A|的值是()。A大于0B等于0C大于0D无法确定

单选题设A为4×5矩阵,且A的行向量组线性无关,则(  )。AA的列向量组线性无关B方程组AX(→)=b(→)有无穷多解C方程组AX(→)=b(→)的增广矩阵A(_)的任意四个列向量构成的向量组线性无关DA的任意4个列向量构成的向量组线性无关

单选题设A为m×n矩阵,齐次线性方程组AX(→)=0(→)仅有零解的充分条件是(  )。AA的列向量组线性无关BA的列向量组线性相关CA的行向量组线性无关DA的行向量组线性相关

单选题n元线性方程组AX(→)=b(→)有唯一解的充要条件为(  )。AA为方阵且|A|≠0B导出组AX(→)=0(→)仅有零解C秩(A)=nD系数矩阵A的列向量组线性无关,且常数向量b(→)与A的列向量组线性相关