2、若对可逆方阵A实施一系列的行初等变换化为单位矩阵E的同时, 对单位矩阵E实施与之完全相同的行初等变换,则单位矩阵E必可化为A的逆方阵.
2、若对可逆方阵A实施一系列的行初等变换化为单位矩阵E的同时, 对单位矩阵E实施与之完全相同的行初等变换,则单位矩阵E必可化为A的逆方阵.
参考答案和解析
正确
相关考题:
单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( )。Ar(A)=m,r(B)=mBr(A)=m,r(B)=nCr(A)=n,r(B)=mDr(A)=n,r(B)=n
问答题设A=E-α(→)α(→)T,其中E是n阶单位矩阵,α(→)是n维非零列向量,α(→)T是α(→)的转置。证明: (1)A2=A的充要条件是α(→)Tα(→)=1; (2)当α(→)Tα(→)=1时,A是不可逆矩阵。
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A4B2C-1D1
单选题设n维向量α(→)=(a,0,…,0,a)T,a<0,E为n阶单位矩阵,矩阵A=E-α(→)α(→)T,B=E+α(→)α(→)T/a,且B为A的逆矩阵,则a=( )。A-1B1C-2D2
单选题设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是( )。AA的任意m个列向量必线性无关BA的任一个m阶子式不等于0C非齐次线性方程组AX(→)=b(→)一定有无穷多组解DA通过行初等变换可化为(Em,0)
单选题设A为n阶方阵,E为n阶单位矩阵,且A2=A,则(A-2E)-1=( )。AA+2EBA+EC(A+E)/2D-(A+E)/2