最小二乘法的基本原理是:在所有拟合的直线中,与所测实际数据的偏差平方和最大的那条直线为最优
最小二乘法的基本原理是:在所有拟合的直线中,与所测实际数据的偏差平方和最大的那条直线为最优
相关考题:
用最小二乘法以利润率为因变量拟合直线回归方程,其最小二乘法的原理是使( )。A.实际Y值与理论 值的离差和最小B.实际Y值与理论 值的离差平方和最小C.实际Y值与Y平均值的离差和最小D.实际Y值与Y平均值的离差平方和最小
如果所有的观测点都落在回归直线上,R2=1说明()。A.回归直线不能解释因变量的所有变化B.因变量的变化与自变量无关C.回归直线可以解释因变量的所有变化D.回归直线的拟合效果很好E.回归直线的拟合效果很差
用最小二乘法以利润率为因变量拟合直线回归方程,其最小二乘法的原理是使( )。A.实际Y值与理论Y值的离差和最小B.实际Y值与理论Y值的离差平方和最小C.实际Y值与Y平均值的离差和最小D.实际Y值与Y平均值的离差平方和最小
在采用直线拟合线性化时,传感器输出输入的实际曲线与其拟合直线之间的最大偏差,通常用相对误差γL来表示,称为(),即γL=±(ΔLmaxyFS)×100%,其中ΔLmax为最大非线性误差,yFS为()。
多选题判定系数的意义是()。A在因变量取值的总离差中可以由自变量取值所解释的比例B它反映了自变量对因变量取值的决定程度C当取值等于1时,拟合是完全的,所有观测值都落在回归直线上D当取值等于0时,自变量的取值与因变量无关E取值越接近1,表明回归直线的拟合越好;相反,取值越接近0;回归直线的拟合越差
单选题最小二乘法是根据历史数据拟合出一条发展趋势线,使该线与实际值之间的()为最小。A离差之和B离差平方和C方差之和D方差平方和