判断题一个稀疏矩阵Am*n采用三元组形式表示,若把三元组中有关行下标与列下标的值互换,并把m和n的值互换,则就完成了Am*n的转置运算。A对B错

判断题
一个稀疏矩阵Am*n采用三元组形式表示,若把三元组中有关行下标与列下标的值互换,并把m和n的值互换,则就完成了Am*n的转置运算。
A

B


参考解析

解析: 暂无解析

相关考题:

如下是一个稀疏矩阵的三元组法存储表示和相关的叙述正确的是A.该稀疏矩阵有8列B.该稀疏矩阵有7列C.该稀疏矩阵有9个非0元素D.该稀疏矩阵的第3行第6列的值为0

如下是一个稀疏矩阵的三元组法存储表示和相关的叙述行下标列下标值113145232326345533I.该稀疏矩阵有5行II.该稀疏矩阵有4列III.该稀疏矩阵有6个非0元素这些叙述中哪个(些)是正确的?A.只有IB.I和IIC.只有IIID.I、II和III

设关系R和S的元数分别是r和S,且R有m个元组,S有n个元组。记R和S的笛卡儿积为A,则( )。A)A的元数是r+s,且有n+m个元组B)A的元数是r+s,且有n×m个元组C)A的元数是r×s,且有n+m个元组D)A的元数是r×s,且有n×m个元组

三元组表示法中每个三元组给出稀疏矩阵中某个非零元素的行号、列号和数值。三元组按【 】优先顺序排列。

对稀疏矩阵进行压缩存储,可采用三元组表,一个10行8列的稀疏矩阵A,其相应的三元组表共有6个元素,矩阵A共有()个零元素。 A.8B.10C.72D.74

若采用三元组存储稀疏矩阵,只要把每个元素的行下标和列下标互换,就完成了对该矩阵的转置运算。() 此题为判断题(对,错)。

阅读下列函数说明和C函数,回答问题1~2,将解答填入栏内。[说明]若矩阵Am×n中存在某个元素aij满足:aij…是第i行中最小值且是第j列中的最大值,则称该元素为矩阵A的一个鞍点。下面程序的功能是输出A中所有鞍点,其中参数A使用二维数组表示,m和n分别是矩阵A的行列数。[程序]void saddle (int A[ ] [ ], int m, int n){ int i,j,min;for (i=0;i <m;i + + ){ min: (1);for (j=1; j<n; j+ +)if(A[i][j]<min) (2);for (j=0; j<n; j+ +)if ((3)){ p=0;while (p<m(4))p+ +;if (p > = m)printf ("%d,%d,%d\n",i,j,min);}}}[问题1] 将函数代码中的(1)~(4)处补充完整[问题2]在上述代码的执行过程中,若A为矩阵,则调用saddle(A,3,3)后输出是(5)。

阅读以下说明和C函数,将应填入(n)处的字句写在对应栏内。[说明]若一个矩阵中的非零元素数目很少且分布没有规律,则称之为稀疏矩阵。对m行n列的稀疏矩阵M,进行转置运算后得到n行m列的矩阵MT,如图3-1所示为了压缩稀疏矩阵的存储空间,用三元组(即元素所在的行号、列号和元素值、表示稀疏矩阵中的一个非零元素,再用一维数组逐行存储稀疏矩阵中的所有非零元素也称为三元组顺序表)。例如,图3-1所示的矩阵M相应的三元组顺序表如表3-1所示。其转置矩阵MT的三元组顺序表如表3-2所示。函数TransposeMatrix(Matrix M)的功能是对用三元组顺序表表示的稀疏矩阵M进行转置运算。对M实施转置运算时,为了将M中的每个非零元素直接存入其转置矩阵MT三元组顺序表的相应位置,需先计算M中每一列非零元素的数目(即MT中每一行非零元素的数目),并记录在向量num中;然后根据以下关系,计算出矩阵M中每列的第一个非零元素在转置矩阵MT三元组顺序表中的位置:cpot[0]=0cpot[j]=cpot[j-1]+num[j-1]) /*j为列号*/类型ElemType,Triple和Matrix定义如下:typedef int ElemType;typedef struct{ /*三元组类型*/int r,c; /*矩阵元素的行号、列号*/ElemType e; /*矩阵元素的值*/}Triple;typedef struct{ /*矩阵的元组三元组顺序表存储结构*/int rows,cols,elements; /*矩阵的行数、列数和非零元素数目*/Triple data[MAXSIZE];}Matrix;[C语言函数]int TransposeMatrix(Matrix M){int j,q,t;int *num, *cpot;Matrix MT; /*MT是M的转置矩阵*/num=(int*)malloc(M.cols*sizeof(int));cpot=(int*)malloc(M.cols*sizeof(int));if(!num ||cpot)return ERROR;MT.rows=(1); /*设置转置矩阵MT行数、列数和非零元素数目*/MT.cols=(2);MT.elements=M.elements;if(M.elements>0){for (q=0 ; q<M. cols ; q++)num[q]=0;for (t=0; t<M.elements;++t) /*计算矩阵M中每一列非零元素数目*/num [M.data[t].c]++;/*计算矩阵M中每列第一个非零元素在其转置矩阵三元组顺序表中的位置*/(3);for(j=1;j<M.cols;j++)cpot[j]=(4);/*以下代码完成转置矩阵MT三元组顺序表元素的设置*/for(t=0;t<M.elements;t++){j=(5); /*取矩阵M的一个非零元素的列号存入j*//*q为该非零元素在转置矩阵MT三元组顺序表中的位置(下标)*/q=cpot[j];MT.data[q].r=M.data[t].c;MT.data[q].c=M.data[t].r;MT.data[q].e=M.data[t].e;++cpot[j]; /*计算M中第j列的下一个非零元素的目的位置*/}/*for*/} /*if*/free(num); free(cpot);/*此处输出矩阵元素,代码省略*/return OK;}/*TransposeMatrix*/

当m行n列的稀疏矩阵采用十字链表表示时,其中单链表的个数为()。 A.m+1B.n+1C.m+n+1D.MAX(m,n)+1

稀疏矩阵是大量元素为0的矩阵。采用三元组法存储时,若有n个三元组,则该稀疏矩阵有 ______个非零元素。

阅读以下说明和流程图,将应填入(n)处的字句写在对应栏内。【说明】在一个矩阵中,如果其零元素的个数远远多于其非零元素的个数时,称这样的矩阵为稀疏矩阵。稀疏矩阵通常采用三元组数组表示。每个非零元素用一个三元组来表示,即非零元素的行号、列号和它的值。然后按某种顺序将全部非零元素的三元组存于一个数组中。例如,对于以下二维数组:int x[3][4]={{1,0,0,0},{0,5,0,0),{0,0,7,2}};可用以下数组a来表示:int a[][3]={{3,4,4},{0,0,1},{1,1,5),{2,2,7},{2,3,2}};其中三元数组a的第1行元素的值分别存储稀疏矩阵×的行数、列数和非零元素的个数。下面的流程图描述了稀疏矩阵转换的过程。【流程图】

如下是一个稀疏矩阵的三元组法存储表示和基于此表示所得出的相关叙述行下标列下标值Ⅰ.该稀疏矩阵有5行Ⅱ.该稀疏矩阵有4列Ⅲ.该稀疏矩阵有6个非0元素这些叙述中正确的是( )。A)仅ⅠB)Ⅰ和ⅡC)仅ⅢD)全部

阅读以下说明和流程图将应填入(n)处的字句写在答题纸的对应栏内【说明】在一个矩阵中如果其零元素的个数远远多于其非零元素的个数时称这样的矩阵为稀疏矩阵稀疏矩阵通常采用三元组数组表示每个非零元素用一个三元组来表示即非零元素的行号列号和它的值然后按某种顺序将全部非零元素的三元组存于一个数组中例如对于以下二维数组其中三元数组a的第行元素的值分别存储稀疏矩阵x的行数列数和非零元素的个数下面的流程图描述了稀疏矩阵转换的过程【流程图】

●设下三角矩阵(上三角部分的元素值都为 0)A[0..n,0..n]如下所示,将该三角矩阵的所有非零元素(即行下标不小于列下标的元素)按行优先压缩存储在容量足够大的数组M[ ]中(下标从1 开始),则元素 A[I,j](O≤i≤n,j≤i)存储在数组M 的 (57) 中。

如下是一个稀疏矩阵的三元组法存储表示和相关的叙述:行下标 列下标 值1 2 62 4 72 1 43 2 64 4 15 2 15 3 6Ⅰ. 该稀疏矩阵有5行Ⅱ. 该稀疏矩阵有4列Ⅲ.该稀疏矩阵有7个非0元素这些叙述中哪个(些)是正确的是(36)。A.只有ⅠB.Ⅰ和ⅡC.只有ⅢD.Ⅰ、Ⅱ和Ⅲ

试题三(共15分)阅读以下说明和C 函数,将应填入(n) 处的字句写在答题纸的对应栏内。[说明]若一个矩阵中的非零元素数目很少且分布没有规律,则称之为稀疏矩阵。对于m行n 列的稀疏矩阵M,进行转置运算后得到n 行m列的矩阵MT,如图3-1 所示。函数TransposeMatrix(Matrix M)的功能是对用三元组顺序表表示的稀疏矩阵M 进行转置运算。对 M 实施转置运算时,为了将M 中的每个非零元素直接存入其转置矩阵MT 三元组顺序表的相应位置,需先计算M 中每一列非零元素的数目(即MT 中每一行非零元素的数目),并记录在向量num 中;然后根据以下关系,计算出矩阵M 中每列的第一个非零元素在转置矩阵MT 三元组顺序表中的位置:cpot[0] = 0cpot[j] = cpot[j-1] + num[j-1] /* j 为列号 */类型ElemType、Triple 和Matrix 定义如下:typedef int ElemType;typedef struct { /* 三元组类型 */int r,c; /* 矩阵元素的行号、列号*/ElemType e; /* 矩阵元素的值*/}Triple;typedef struct { /* 矩阵的三元组顺序表存储结构 */int rows,cols,elements; /* 矩阵的行数、列数和非零元素数目 */Triple data[MAXSIZE];}Matrix;[C函数]int TransposeMatrix(Matrix M){int j,q,t;int *num, *cpot;Matrix MT; /* MT 是M的转置矩阵 */num = (int *)malloc(M.cols*sizeof(int));cpot = (int *)malloc(M.cols*sizeof(int));if (!num || !cpot)return ERROR;MT.rows = (1) ; /* 设置转置矩阵MT行数、列数和非零元数目*/MT.cols = (2) ;MT.elements = M.elements;if (M.elements 0) {for(q = 0; q M.cols; q++)num[q] = 0;for(t = 0; t M.elements; ++t) /* 计算矩阵M 中每一列非零元素数目*/num[M.data[t].c]++;/* 计算矩阵M中每列第一个非零元素在其转置矩阵三元组顺序表中的位置*/(3) ;for(j = 1;j M.cols; j++)cpot[j] = (4) ;/* 以下代码完成转置矩阵MT三元组顺序表元素的设置 */for(t = 0; t M.elements;t++){j = (5) ; /* 取矩阵M 的一个非零元素的列号存入j *//* q 为该非零元素在转置矩阵MT 三元组顺序表中的位置(下标)*/q = cpot[j];MT.data[q].r = M.data[t].c;MT.data[q].c = M.data[t].r;MT.data[q].e = M.data[t].e;++cpot[j]; /* 计算M 中第j列的下一个非零元素的目的位置 */}/* for */}/* if */free(num); free(cpot);/*此处输出矩阵元素,代码省略*/return OK;}/* TransposeMatrix */

设关系R和S的元数分别是r和s,且R有m个元组,S有n个元组。记R和S的笛卡儿积为A,则( )。A)A的元数是r s,且有n m个元组B)A的元数是r s,且有n?m个元组C)A的元数是r?s,且有n m个元组D)A的元数是r?s,且有n?m个元组

稀疏矩阵是大量元素为0的矩阵。采用三元组法存储时,若有n行三元组,则该稀疏矩阵有____________个非零元素。

一个稀疏矩阵Am*n采用三元组形式表示,若把三元组中有关行下标与列下标的值互换,并把m和n的值互换,则就完成了Am*n的转置运算。

对稀疏矩阵进行压缩存储,可采用三元组表,一个10行8列的稀疏矩阵A,其相应的三元组表共有6个元素,矩阵A共有()个零元素。A、8B、72C、74D、10

采用稀疏矩阵的三元组表形式进行压缩存储,若要完成对三元组表进行转置,只要将行和列对换,这种说法()。A、正确B、错误C、无法确定D、以上均不对

对稀疏矩阵进行压缩存储,可采用三元组表,一个6行7列的稀疏矩阵A共有38个零元素,其相应的三元组表共有()个元素。

若采用三元组压缩技术存储稀疏矩阵,只要把每个元素的行下标和列下标互换,就完成了对该矩阵的转置运算。

若关系R和S分别包含r和s个属性,分别含有m和n个元组,则R×S()A、包含r+s个属性和m+n个元组B、包含r+s个属性和m×n个元组C、包含r×s个属性和m+n个元组D、包含r×s个属性和m×n个元组

判断题若采用三元组压缩技术存储稀疏矩阵,只要把每个元素的行下标和列下标互换,就完成了对该矩阵的转置运算。A对B错

单选题若关系R和S分别包含r和s个属性,分别含有m和n个元组,则R×S()A包含r+s个属性和m+n个元组B包含r+s个属性和m×n个元组C包含r×s个属性和m+n个元组D包含r×s个属性和m×n个元组

填空题对稀疏矩阵进行压缩存储,可采用三元组表,一个6行7列的稀疏矩阵A共有38个零元素,其相应的三元组表共有()个元素。