设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解

设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。

A.若Ax=0仅有零解,则Ax=b有惟一解
B.若Ax=0有非零解,则Ax=b有无穷多个解
C.若Ax=b有无穷多个解,则Ax=0仅有零解
D.若Ax=b有无穷多个解,则Ax=0有非零解

参考解析

解析:

相关考题:

设n元齐次线性方程组AX=O只有零解,则秩(A)=()。

设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解

矩阵A是m×n矩阵,齐次线性方程组AX=0只有零解的充要条件是A的列向量线性无关。() 此题为判断题(对,错)。

设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )A.1 B.2C.3 D.4

设α1,α2是非齐次线性方程组Ax=b的解.则A(5α2-4α1)=_________.

设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系B.k1ξ1+k1ξ2是Ax=0的通解C.k1ξ1+ξ2是Ax=0的通解D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

若非齐次线性方程组AX=b中,方程的个数少于未知量的个数,则下列结论中正确的是:A.AX=0仅有零解B.AX=0必有非零解C.AX=0—定无解D.AX=b必有无穷多解

若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解

若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解

设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.

设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充要条件为( )。A.r=nB.r<nC.r≥nD.r>n

非齐次线性方程组Ax=B中未知变量的个数为n,方程的个数为m,系数矩阵A的秩为r,则下列说法正确的是( )。

设A为m×n阶矩阵,且r(A)=mAA的任意m个列向量都线性无关BA的任意m阶子式都不等于零C非齐次线性方程组AX=b一定有无穷多个解D矩阵A通过初等行变换一定可以化为

设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵

设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r(A)=r

若非齐次线性方程组中,方程的个数少于未知量的个数,则下列结论中正确的是:A.AX=0仅有零解B.AX=0必有非零解C.AX=0 —定无解D.AX=b必有无穷多解

设A为矩阵,都是齐次线性方程组Ax=0的解,则矩阵A为( )。

设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A、①②B、①③C、②④D、③④

若非齐次线性方程组Ax=b中方程个数少于未知量个数,则下列结论中正确的是()。A、Ax=0仅有零解B、Ax=0必有非零解C、Ax=0一定无解D、Ax=b必有无穷多解

设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A、无解B、只有零解C、有非零解D、不一定

单选题设A是4×6矩阵,则齐次线性方程组AX=0解的情况是()。A无解B只有零解C有非零解D不一定

填空题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|____。

单选题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。A=0B≠0C=1D≠1

单选题设A为n阶方阵,则n元齐次线性方程组AX(→)=0(→)仅有零解的充要条件是|A|(  )。A<0B≠0C>0D=0

单选题设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题 ①若Ax=0的解均是Bx=0的解,则rA≥rB; ②若rA≥rB,则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则rA=rB; ④若rA=rB,则Ax=0与Bx=0同解。 以上命题中正确的是()。A①②B①③C②④D③④

单选题设矩阵Am×n的秩r(A)=m<n,Em为m阶单位矩阵,下述结论正确的是(  )。AA的任意m个列向量必线性无关BA的任一个m阶子式不等于0C非齐次线性方程组AX(→)=b(→)一定有无穷多组解DA通过行初等变换可化为(Em,0)