响应变量Y与两个自变量(原始数据)X1及X2建立的回归方程为y=2.2+30000x1+0.0003x2由此方程可以得到的结论是:()A、X1对Y的影响比X2对Y的影响要显著得多B、X1对Y的影响与X2对Y的影响相同C、X2对Y的影响比X1对Y的影响要显著得多D、仅由此方程不能对X1及X2对Y的影响大小做出判断

响应变量Y与两个自变量(原始数据)X1及X2建立的回归方程为y=2.2+30000x1+0.0003x2由此方程可以得到的结论是:()

  • A、X1对Y的影响比X2对Y的影响要显著得多
  • B、X1对Y的影响与X2对Y的影响相同
  • C、X2对Y的影响比X1对Y的影响要显著得多
  • D、仅由此方程不能对X1及X2对Y的影响大小做出判断

相关考题:

或非门的输入变量为X1和X2,输出变量为Y,使输出变量Y为1的X1和X2的值是A.0,0B.0,0C.1,0D.1,1

当一组自变量X1,X2,…,Xn都有相应的因变量Y1,Y2,…,Yn与之对应,要研究这两组变量的关系可采用()。 A、排列图B、散布图C、直方图D、因果图

根据计算上述回归方程式的多重判定系数为0.9235,其正确的含义是( )。A.在Y的总变差中,有92.35%可以由解释变量X1和X2解释B.在Y的总变差中,有92.35%可以由解释变量X1解释C.在Y的总变差中,有92.35%可以由解释变量X2解释D.在Y的变化中,有92.35%是由解释变量X1和X2决定的

对于回归方程下列说法中正确的是( )。A.只能由自变量x去预测因变量yB.只能由因变量y去预测自变量xC.既可以由自变量x去预测因变量y,也可以由变量因y去预测自变量xD.能否相互预测,取决于自变量x和变量因y之间的因果关系

如果从变量y1,y2到x1,x2的线性变换是,则变量x1,x2到变量y1,y2的线性变换是:

为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示:请根据上述结果,从下列备选答案中选出正确答案。根据计算上述回归方程式的多重判定系数为0.9235,其正确的含义是()。A.在Y的总变差中,有92.35%可以由解释变量X1和X2解释B.在Y的总变差中,有92.35%可以由解释变量X1解释C.在Y的总变差中,有92.35%可以由解释变量X2解释D.在Y的变化中,有92.35%是由解释变量X1和X2决定的

为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下 请根据上述结果,从下列备选答案中选出正确答案。 根据计算上述回归方程式的多重判定系数为0.9235,其正确的含义是()。A.在Y的总变差中,有92.35%可以由解释变量X1和X2解释B.在Y的总变差中,有92.35%可以由解释变量置解释C.在Y的总变差中,有92.35%可以由解释变量X2解释D.在Y的变化中,有92.35%是由解释变量X1和X2决定的

为预测我国居民家庭对电力的需求量,建立了我国居民家庭电力消耗量(Y,单位:千瓦小时)与可支配收入(X1,单位:百元)、居住面积(X2,单位:平方米)的多元线性回归方程,如下所示: 根据上述回归方程式计算的多重判定系数为0.9235,其正确的含义是( )。A.在Y的总变差中,有92.35%可以由解释变量X1和X2解释B.在Y的总变差中,有92.35%可以由解释变量X1解释C.在Y的总变差中,有92.35%可以由解释变量X2解释D.在Y的变化中,有92.35%是由解释变量X1和X2决定的

为预测我国居民对电子表的需求量,定义变量“商品价格”(x1,单位:元/件)、“消费者人均月收入”(x2,单位:元)及“商品需求量”(y,单位:件),建立多元线性回归方程如下:y=4990.519-35.66597x1+6.19273x2,请根据上述结果,从备选答案中选出正确答案。根据计算上述回归方程式的多重判定系数为0.9540,其正确的含义是()。A、在Y的变化中,有95.40%是由解释变量x1和x2决定的B、在Y的总变差中,有95.40%可以由解释变量x2解释C、在Y的总变差中,有95.40%可以由解释变量x1解释D、在Y的总变差中,有95.40%可以由解释变量x1和x2解释

标准的回归方程y=a+bx中,字母x是()A、 应变量B、 自变量C、 常数D、 变量系数

对于一元线性回归分析来说()A、两变量之间必须明确哪个是自变量,哪个是因变量B、回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C、可能存在着y依x和x依y的两个回归方程D、回归系数只有正号E、确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的

已知某公司销售量(Y)与人均收入(X1)、广告费(X2)、商品价格(X3)的回归方程为:Y=28.9+6.5X1+2.8X2-0.8X3,试分析解释回归方程中,X1、X2、X3的系数的含义及对Y的影响程度,并根据分析结果进行决策。

直线回归方程y=a+bx,式中a表示()。A、自变量B、因变量C、截距D、斜率

直线回归方程y=a+bx,式中b表示()。A、自变量B、因变量C、截距D、斜率

自变量X、依变量Y的单位改变的时候,一元线性回归方程保持不变。

直线回归分析中()A、x是自变量,y是因变量B、自变量是给定的,因变量是随机的C、x与y的相关系数符号一定为正D、两个变量是不对等关系E、回归方程有两个

回归分析中,对于没有明显关系的两个变量,可以建立y倚x变动和x倚y变动的两个回归方程。

回归方程y=a+bx中,回归系数b为负数,说明自变量与因变量为()。A、负相关B、正相关C、显著相关D、高度相关

响应变量Y与两个自变量(原始数据)X1及X2建立的回归方程为:Y=2.1X1+2.3X2,由此方程可以得到结论是()A、X1对Y的影响比X2对Y的影响要显著得多B、X1对Y的影响比X2对Y的影响相同C、X2对Y的影响比X1对Y的影响要显著得多D、仅由此方程不能对X1及X2对Y影响大小作出判定

回归直线方程中两个变量x和y()A、都是随机变量;B、都是自变量;C、x是随机变量,y是自变量;D、x是自变量,y是随机变量;。

一元线性回归方程y=a+bx中,b表示()A、自变量x每增加一个单位,因变量y增加的数量B、自变量x每增加一个单位,因变量y平均增加或减少的数量C、自变量x每减少一个单位,因变量y减少的数量D、自变量x每减少一个单位,因变量y增加的数量

单选题响应变量Y与两个自变量(原始数据)X1及X2建立的回归方程为y=2.2+30000x1+0.0003x2由此方程可以得到的结论是:()AX1对Y的影响比X2对Y的影响要显著得多BX1对Y的影响与X2对Y的影响相同CX2对Y的影响比X1对Y的影响要显著得多D仅由此方程不能对X1及X2对Y的影响大小做出判断

多选题对于一元线性回归分析来说()A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的

单选题A 在Y的总变差中,有92. 35%可以由解释变量X1和X2解释B 在Y的总变差中,有92. 35%可以由解释变量X1解释C 在Y的总变差中,有92. 35%可以由解释变量X2解释D 在Y的变化中,有92. 35%是由解释变量X1和X2决定的

单选题响应变量Y与两个自变量(原始数据)X1及X2建立的回归方程为:Y=2.1X1+2.3X2,由此方程可以得到结论是()AX1对Y的影响比X2对Y的影响要显著得多BX1对Y的影响比X2对Y的影响相同CX2对Y的影响比X1对Y的影响要显著得多D仅由此方程不能对X1及X2对Y影响大小作出判定

多选题直线回归分析中()Ax是自变量,y是因变量B自变量是给定的,因变量是随机的Cx与y的相关系数符号一定为正D两个变量是不对等关系E回归方程有两个

单选题为预测我国居民对电子表的需求量,定义变量“商品价格”(x1,单位:元/件)、“消费者人均月收入”(x2,单位:元)及“商品需求量”(y,单位:件),建立多元线性回归方程如下:y=4990.519-35.66597x1+6.19273x2,请根据上述结果,从备选答案中选出正确答案。根据计算上述回归方程式的多重判定系数为0.9540,其正确的含义是()。A在Y的变化中,有95.40%是由解释变量x1和x2决定的B在Y的总变差中,有95.40%可以由解释变量x2解释C在Y的总变差中,有95.40%可以由解释变量x1解释D在Y的总变差中,有95.40%可以由解释变量x1和x2解释