单选题设函数f(x)=x2(x-1)(x-2),则f′(x)的零点个数为( )。A0B1C2D3
单选题
设函数f(x)=x2(x-1)(x-2),则f′(x)的零点个数为( )。
A
0
B
1
C
2
D
3
参考解析
解析:
函数f(x)=x2(x-1)(x-2),f(0)=f(1)=f(2)=0,由罗尔定理可知,至少有ξ1∈(0,1)、ξ2∈(1,2)使得f′(ξ1)=0,f′(ξ2)=0,即f′(x)至少有两个零点。又函数f(x)是四次多项式,故f′(x)是三次多项式,三次方程f′(x)=0的实根不是一个就是三个,故f′(x)有三个零点。
函数f(x)=x2(x-1)(x-2),f(0)=f(1)=f(2)=0,由罗尔定理可知,至少有ξ1∈(0,1)、ξ2∈(1,2)使得f′(ξ1)=0,f′(ξ2)=0,即f′(x)至少有两个零点。又函数f(x)是四次多项式,故f′(x)是三次多项式,三次方程f′(x)=0的实根不是一个就是三个,故f′(x)有三个零点。
相关考题:
单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是( )。A对任意x,f′(x)>0B对任意x,f′(x)≤0C函数-f(-x)单调增加D函数f(-x)单调增加
单选题设f(x)=x(x-1)(x-2),则方程f'(x)=0的实根个数是:A3B2C1D0