问答题23.X~N(0,1),求以下Y的概率密度:Y=|X|.

问答题
23.X~N(0,1),求以下Y的概率密度:Y=|X|.

参考解析

解析:

相关考题:

设X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y服从的分布为() A、X+Y服从N(0,1)B、X+Y不服从正态分布C、X+Y~X2(2)D、X+Y也服从正态分布

若函数y=f(x)是一随机变量的概率密度,则()一定成立。 A、y=f(x)的定义域为[0,1]B、y=f(x)非负C、y=f(x)的值域为[0,1]D、y=f(x)在(-∞,+∞)内连续

已知(X,Y)服从均匀分布,联合概率密度函数为设Z=max{X,Y}求Z的概率密度函数fz(z)

设随机变量X,Y相互独立,且X~N(0,1),Y~N(1,1),则().

设X,Y相互独立,且X~N(1,2),Y~N(0,1),求2=2X-Y+3的密度函数,

设X~U(0,2),y=X^2,求y的概率密度函数.

设随机变量X,y相互独立,且X~,Y~E(4),令U=X+2Y,求U的概率密度.

设X~N(0,1),y=X^2,求y的概率密度函数.

设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概率密度函数.

设随机变量X的概率密度为fx(x)=求y=e^x的概率密度FY(y).

设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数

设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.

设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2,与y=0所围成的三角形区域.  (Ⅰ)求X的概率密度fx(x);  (Ⅱ)求条件概率密度.

设随机变量X与Y独立,其中X的概率分布为而Y的概率密度为f(y),求随机变量U=X+Y的概率密度g(u).

设随机变量X~U(0,1),在X=x(0  (1)求X,y的联合密度函数;  (2)求y的边缘密度函数.

设X,Y相互独立,且X~B,Y~N(0,1),令U=max{X,Y},求P{1

设(X,Y)的联合概率密度为f(x,y)=求:(1)(X,Y)的边缘密度函数;(2)2=2X-Y的密度函数.

设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;  (Ⅱ)Y的概率密度;  (Ⅲ)概率P{X+Y>1}.

设随机变量X的概率密度为令随机变量,  (Ⅰ)求Y的分布函数;  (Ⅱ)求概率P{X≤Y}.

设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为  (Ⅰ)求P{Y≤EY};  (Ⅱ)求Z=X+Y的概率密度.

设随机变量X~N(0,1),Y=aX+b(a>0),则()A、Y~N(0,1)B、Y~N(b,a)C、Y~N(b,a2)D、Y~N(a+b,a2)

设X~N(0,1),Y=2X+1,则P{Y-1∣2}=()

问答题37.设X~N(0,1),则Y=2X+1的概率密度fY(y)=

问答题设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

问答题设随机变量(X,Y)的概率密度为   求:(1)系数k.   (2)边缘概率密度fX(x),fY(y).   (3)P{X+Y1}.

问答题 随机变量(X,Y)在矩形区域D={(x,y)|a   求:(1)联合概率密度f(x,y).    (2)边缘概率密度f X(i),f Y(y).    (3)X与Y是否独立?

问答题 设X与Y相互独立,X的概率密度为  Y的概率密度为  求:(1)E(2X-3Y+1),D(2X-3Y+1);  (2)Cov(X,Y),ρXY.