问答题有0-1背包问题如下: n=6,c=20,P=(4,8,15,1,6,3),W=(5,3,2,10,4,8)。 其中n为物品个数,c为背包载重量,P表示物品的价值,W表示物品的重量。请问对于此0-1背包问题,应如何选择放进去的物品,才能使到放进背包的物品总价值最大。 P=(15,8,6,4,3,1),W=(2,3,4,5,8,10),单位重量物品价值(7.5,2.67,1.5,0.8,0.375,0.1)

问答题
有0-1背包问题如下: n=6,c=20,P=(4,8,15,1,6,3),W=(5,3,2,10,4,8)。 其中n为物品个数,c为背包载重量,P表示物品的价值,W表示物品的重量。请问对于此0-1背包问题,应如何选择放进去的物品,才能使到放进背包的物品总价值最大。 P=(15,8,6,4,3,1),W=(2,3,4,5,8,10),单位重量物品价值(7.5,2.67,1.5,0.8,0.375,0.1)

参考解析

解析: 暂无解析

相关考题:

背包问题的贪心算法所需的计算时间为() A.O(n2n)B.O(nlogn)C.O(2n)D.O(n)

●试题四阅读下列程序说明和C代码,将应填入(n)处的字句写在答题纸的对应栏内。【程序4.1说明】"背包问题"的基本描述是:有一个背包,能盛放的物品总重量为S,设有N件物品,其重量分别为w1,w2,...,wn,希望从N件物品中选择若干件物品,所选物品的重量之和恰能放入该背包,即所选物品的重量之和等于S。如下程序均能求得"背包问题"的一组解,其中程序4.1是"背包问题"的递归解法,而程序4.2是"背包问题"的非递归解法。【程序4.1】#includestdio.h#define N 7#define S 15int w[N+1]={0,1,4,3,4,5,2,7};int knap(int s,int n){ if(s==0)return 1;if (s0||(s0 n1))return 0;if( (1) )){printf(″%4d″,w[n]);return 1;}return (2) ;}main(){if( knap(S,N))printf(″OK!\n″);else printf(″N0!\n″);}【程序4.2】#includestdio.h#define N 7#define S 15typedef struct {int s;int n:int job;} KNAPTP;int w[N+1]={0,1,4,3,4,5,2,7};int knap (int s,int n);main( ) {if (knap (S,N)) printf (″OK!\n″);else printf (″NO!\n″);}int knap (int s,int n){ KNAPTP stack[100],x;int top,k,rep;x.s=s;x.n=n;x.job=0;top=l;stack[top]=x;k=0;while( (3) ) {x=stack [ top ];rep=1;while ( !k rep ) {if (x.s==0)k=1;/*已求得一组解*/else if (x.s0 || x.n =0)rep=0;else{x.s= (4) ;x.job=1;(5) =x;}}if(!k){rep=1;while(top=1rep){x=stack[top--];if(x.job==1){x.s+=w[x.n+1];x.job=2;stack[++top]=x;(6) ;}}}}if(k){/*输出一组解*/while(top=1){x=stack[top--];if(x.job==1)printf(″%d\t″,w[x.n+1]);}}return k;}

阅读下列程序说明和C++代码,将应填入(n)处。【说明】“背包问题”的基本描述是:有一个背包,能盛放的物品总重量为S,设有N件物品,其重量分别为w1;w2,……,wn,希望从N件物品中选择若干件物品,所选物品的重量之和恰能放入该背包,即所选物品的重量之和等于S。如下程序均能求得“背包问题”的一组解,其中程序4.1是“背包问题”的递归解法,而程序4.2是“背包问题”的非递归解法。【程序4.1】include<stdio.h>define N 7define S 15int w[N+1]={0,1,4,3,4,5,2,7};int knap(int s,int n){ if(s==0)return 1;if(s<0||(s>0 n<1))return 0;if((1)))|printf("%4d",w[n]);return 1;} return (2);}main(){if(knap(S,N))printf("OK!\n");else printf("NO!\n");}【程序4.2】include<stdio.h>define N 7define S 15typedef struct{int s;int n:int job;} KNAPTP;int w[N+1]={0,1,4,3,4,5,2,7};int knap(int s,int n);main(){if(knap(S,N))printf("OK!\n");else printf("NO!\n");}int knap(int s,int n){ KNAPTP stack[100],x;int top,k,rep;x.s=s;x.n=n;x.job=0;top=|;Stack[top]=x;k=0;while((3)){x=Stack[top];rep=1;while(!k rep){if(x.s==0)k=1;/*已求得一组解*/else if(x.s<0||x.n <=0)rep=0;else{x.s=(4);x.job=1;(5)=x;}}if(!k){rep=1;while(top>=1rep){x=stack[top--];if(x.job==1){x.s+=W[x.n+1];x.job=2;Stack[++top]=x;(6);}}}}if(k){/*输出一组解*/while(top>=1){x=staCk[top--];if(x.job==1)printf("%d\t",w[x.n+1]);}}return k;}

脑干听觉诱发电位的基本波形A.腕刺激在Erb点可记录到N9波B.有N75、P100、N145等主波,其中,N75的波幅最大C.有N75、P100、N145等主波,其中,P100的波幅最大D.有N75、P100、N145等主波,其中,N145的波幅最大E.典型的波为Ⅰ~Ⅴ波

阅读下列程序说明和C代码,将应填入(n)处的字句写在对应栏内。【说明】“背包问题”的基本描述是:有一个背包,能盛放的物品总重量为S,设有N件物品,其重量分别为w1,w2,…,wn。希望从N件物品中选择若干件物品,所选物品的重量之和恰能放入该背包,即所选物品的重量之和等于S。如下程序均能求得“背包问题”的一组解,其中程序1是“背包问题”的递归解法,而程序2是“背包问题”的非递归解法。【程序1】include<stdio.h>define N 7define S 15int w[N+1]={0,1,4,3,4,5,2,7};int knap(int s, int n){if(s==0) return 1;if(s<0 || (s>0 n<1))return 0;if((1)){/*考虑物品n被选择的情况*/printf("%4d",w[n]);return 1;}return (2);/*考虑不选择物品n的情况*/}main(){if(knap(S,N))printf("OK!\n");else printf("N0!\n");}【程序2】include<stdio.h>define N 7define S 15typedef struct{int s;int n;int job;}KNAPTP;int w[N+1]={0,1,4,3,4,5,2,7};int knap(int s, int n);main(){if(knap(S,N)) printf("0K!\n");else printf("N0!\n");}int knap(int s, int n){KNAPTP stack[100],x;int top, k, rep;x.s=s;x.n=n;x.job=0;top=1; stack[top]=x;k=0;while( (3) ){x=stack[top];rep=1;while(!k rep){if(x.s==0) k=1;/*已求得一组解*/else if(x.s<0 || x.n<=0) rep=0;else{x.s=(4);x.job=1;(5)=x;}}/*while*/if(!k){rep=1;while(top>=1 rep){x=stack[top--];if(x.job==1){x.s +=w[x.n+1];x.job=2;stack[++top]=x;(6);}/*if*/}/*while*/}/*if*//*while*/if(k){&nbs

阅读下列说明,回答问题1至问题2,将解答填入答题纸的对应栏内。【说明】0—1背包问题可以描述为:有n个物品,对i=l,2,…,n,第i个物品价值为vi,重量为wi(vi和wi为非负数),背包容量为w(W为非负数),选择其中一些物品装入背包,使装入背包物品的总价值最大,即,且总重量不超过背包容量,即,其中,xi∈{O,1},xi=0表示第i个物品不放入背包,xi=1表示第i个物品放入背包。用回溯法求解此0—1背包问题,请填充下面伪代码中(1)~(4)处空缺。回溯法是一种系统的搜索方法。在确定解空间后,回溯法从根结点开始,按照深度优先策略遍历解空间树,搜索满足约束条件的解。对每一个当前结点,若扩展该结点已经不满足约束条件,则不再继续扩展。为了进一步提高算法的搜索效率,往往需要设计一个限界函数,判断并剪枝那些即使扩展了也不能得到最优解的结点。现在假设已经设计了BOuND(v,w,k,W)函数,其中v、w、k和w分别表示当前已经获得的价值、当前背包的重量、已经确定是否选择的物品数和背包的总容量。对应于搜索树中的某个结点,该函数值表示确定了部分物品是否选择之后,对剩下的物品在满足约束条件的前提下进行选择可能获得的最大价值,若该价值小于等于当前已经得到的最优解,则该结点无需再扩展。下面给出0—1背包问题的回溯算法伪代码。函数参数说明如下:w:背包容量;n:物品个数;w:重量数组;v:价值数组;fw:获得最大价值时背包的重量;fp:背包获得的最大价值;X:问题的最优解。变量说明如下:cw:当前的背包重量;cp:当前获得的价值;k:当前考虑的物品编号;Y:当前已获得的部分解。BKNAP(W,n,w,v,fw,fp,X)1 cw←cp02 (1)3 fp←l4 while true5 while k≤n and cw+w[k]≤w d。6 (2)7 cp←cp+v[k]8 Y[k]←l9 k←k+110 if kn then11 if fpcp then12 fp←cp13 fw←cw14 k←n15 X←Y16 else Y (k)←O17 while BOUND(cp,cw,k,W) ≤fp do18 while k≠O and Y(k)≠l d019 (3)20 if k=0 then return2l Y[k]←022 cw←cw-w[k]23 cp←cp-v[k]24 (4)

1 6 .I n t e r n e t 上最基本的通信协议是( ) 。A .A T MB .I n t e r n e tC .T C P /I PD .W i n d o w s

0-1背包问题可以描述为:有n个物品,对i=1,2,…,n,第i个物品价值为vi ,重量为wi(vi,和wi为非负数),背包容量为W(W为非负数),选择其中一些物品装入背包,使装入背包物品的总价值最大,,且总重量不超过背包容量,即,其中,xi∈{0,1},xi=0表示第i个物品不放入背包,xi=1表示第i个物品 放入背包。【问题1】(8分)用回溯法求解此0-1背包问题,请填充下面伪代码中(1)~(4)处空缺。回溯法是一种系统的搜索方法。在确定解空间后,回溯法从根结点开始,按照深度优先策略遍历解空间树,搜索满足约束条件的解。对每一个当前结点,若扩展该结点己经不满足约束条件,则不再继续扩展。为了进一步提高算法的搜索效率,往往需要设计一个限界函数,判断并剪枝那些即使扩展了也不能得到最优解的结点。现在假设已经设计了BOUND(v,w,k,W)函数,其中v, w, k和W分别表示当前已经获得的价值、当前背包的重量、己经确定是否选择的物品数和背包的总容量。对应于搜索树中的某个结点,该函数值表示确定了部分物品是否选择之后,对剩下的物品在满足约束条件的前提下进行选择可能获得的最大价值,若该价值小于等于当前已经得到的最优解,则该结点无需再扩展。下面给出0-1背包问题的回溯算法伪代码。函数参数说明如下:W:背包容量;n:物品个数;w:重量数组;v:价值数组;fw:获得最大价值时背包的重量;fp:背包获得的最大价值;X:问题的最优解。变量说明如下:cw:当前的背包重量;cp:当前获得的价值;k:当前考虑的物品编号;Y:当前已获得的部分解。BKNAP(W,n,w,v,fw,fp,X)1 cw ← cp ← 02 (1)3 fp ← -14 while true5 while k≤n and cw+w[k]≤W do6 (2)7 cp ← cp+v[k]8 Y[k]← 19 k ← k+110 if k>n then11 if fp<cp then12 fp ← cp13 fw ← ew14 k ← n15 X ← Y16 else Y(k)← 017 while BOUND(cp,cw,k,W) ≤fp do18 while k≠0 and Y(k)≠1 do19 (3)20 if k=0 then return21 Y[k]←022 cw ← cw ← w[k]23 cp ← cp ← v[k]24 (4)

考虑一个背包问题,共有n=5个物品,背包容量为W=10,物品的重量和价值分别为:w={2,2,6,5,4},v={6,3,5,4,6},求背包问题的最大装包价值。若此为0-1背包问题,分析该问题具有最优子结构,定义递归式为其中c(i,j)表示i个物品、容量为j的0-1背包问题的最大装包价值,最终要求解c(n,W)。 采用自底向上的动态规划方法求解,得到最大装包价值为(62),算法的时间复杂度为(63)。 若此为部分背包问题,首先采用归并排序算法,根据物品的单位重量价值从大到小排序,然后依次将物品放入背包直至所有物品放入背包中或者背包再无容量,则得到的最大装包价值为(64),算法的时间复杂度为(65)。A.11B.14C.15D.16.67

【问题 1】(8 分)用回溯法求解此 0-1 背包问题,请填充下面伪代码中(1)~(4)处空缺。回溯法是一种系统的搜索方法。在确定解空间后,回溯法从根结点开始,按照深度优先策略遍历解空间树,搜索满足约束条件的解。对每一个当前结点,若扩展该结点已经不满足约束条件,则不再继续扩展。为了进一步提高算法的搜索效率,往往需要设计一个限界函数,判断并剪枝那些即使扩展了也不能得到最优解的结点。现在假设已经设计了BOUND( v,w,k,W )函数,其中 v、w、k 和 W分别表示当前已经获得的价值、当前背包的重量、已经确定是否选择的物品数和背包的总容量。对应于搜索树中的某个结点,该函数值表示确定了部分物品是否选择之后,对剩下的物品在满足约束条件的前提下进行选择可能获得的最大价值,若该价值小于等于当前已经得到的最优解,则该结点无需再扩展。下面给出 0-1背包问题的回溯算法伪代码。函数参数说明如下:W:背包容量;n:物品个数;w:重量数组;v:价值数组;fw:获得最大价值时背包的重量;fp:背包获得的最大价值;X:问题的最优解。变量说明如下:cw:当前的背包重量;cp:当前获得的价值;k:当前考虑的物品编号;Y:当前已获得的部分解。

在三维空间中,可用下面的哪个表达式表示平面()。A、n.p+d=0,其中n为法线,p为平面上一点,d为常数B、n.P-d=0,其中n为法线,p为平面上一点,d为常数C、n×P=0,其中n为法线,p为平面上一点D、n×P+d=0,其中n为法线,p为平面上一点,d为常数

有0-1背包问题如下: n=6,c=20,P=(4,8,15,1,6,3),W=(5,3,2,10,4,8)。 其中n为物品个数,c为背包载重量,P表示物品的价值,W表示物品的重量。请问对于此0-1背包问题,应如何选择放进去的物品,才能使到放进背包的物品总价值最大。 P=(15,8,6,4,3,1),W=(2,3,4,5,8,10),单位重量物品价值(7.5,2.67,1.5,0.8,0.375,0.1)

关于0-1背包问题以下描述正确的是()A、可以使用贪心算法找到最优解B、能找到多项式时间的有效算法C、使用教材介绍的动态规划方法可求解任意0-1背包问题D、对于同一背包与相同的物品,做背包问题取得的总价值一定大于等于做0-1背包问题

考虑背包问题:n=6,物品重量W=(1,5,2,3,6,1),价值P=(15,59,21,30,60,5),背包载重量C=10。能放进背包的物品价值最大为()。A、101B、110C、115D、120

对于0-1背包问题和背包问题的解法,下面()答案解释正确。A、0-1背包问题和背包问题都可用贪心算法求解B、0-1背包问题可用贪心算法求解,但背包问题则不能用贪心算法求解C、0-1背包问题不能用贪心算法求解,但可以使用动态规划或搜索算法求解,而背包问题则可以用贪心算法求解D、因为0-1背包问题不具有最优子结构性质,所以不能用贪心算法求解

设有如下定义成的链表,structst{intn;structst*next;}a[3]={5,a[1],7,a[2],9,NULL},*p=a;则值为6的表达式是()。A、p++-nB、p-n++C、(*p).n++D、++p-n

背包问题的贪心算法所需的计算时间为()A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)

0-1背包问题的回溯算法所需的计算时间为()A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)

有这样一类特殊0-1背包问题:可选物品重量越轻的物品价值越高。 n=6,c=20,P=(4,8,15,1,6,3),W=(5,3,2,10,4,8)。 其中n为物品个数,c为背包载重量,P表示物品的价值,W表示物品的重量。请问对于此0-1背包问题,应如何选择放进去的物品,才能使到放进背包的物品总价值最大,能获得的最大总价值多少?

描述0-1背包问题。

下列关系式中正确的有()A、(F/A,i,n)=(F/P,i,n)×(P/A,i,n)B、(F/P,i,n)=(F/P,i,n1)×(F/P,i,n2)其中n1+n2=nC、(P/F,i,n)=(P/F,i,n1)+(P/F,i,n2)其中n1+n2=nD、(P/A,i.n)=(P/F,i,n)/(A/F,i,n)E、1/(F/A,i,n)=(A/F,i,n)

单选题背包问题的贪心算法所需的计算时间为()AO(n2n)BO(nlogn)CO(2n)DO(n)

单选题关于0-1背包问题以下描述正确的是()A可以使用贪心算法找到最优解B能找到多项式时间的有效算法C使用教材介绍的动态规划方法可求解任意0-1背包问题D对于同一背包与相同的物品,做背包问题取得的总价值一定大于等于做0-1背包问题

问答题有这样一类特殊0-1背包问题:可选物品重量越轻的物品价值越高。 n=6,c=20,P=(4,8,15,1,6,3),W=(5,3,2,10,4,8)。 其中n为物品个数,c为背包载重量,P表示物品的价值,W表示物品的重量。请问对于此0-1背包问题,应如何选择放进去的物品,才能使到放进背包的物品总价值最大,能获得的最大总价值多少?

单选题女(nǚ):老师(lǎoshī),我(wǒ)可以(kěyǐ)问(wèn)您(nín)一(yī)个(gè)问题(wèntí)吗(mɑ)?男(nán):什(shén)么(me)问题(wèntí)?ABCDEF

问答题设系统中仅有一类数量为M的独占型资源,系统中N个进程竞争该类资源,其中各进程对该类资源的最大需求量为W。当M、N、W分别取下列值时,试判断哪些情况会发生死锁?为什么?  ①M=2,N=2,W=1 ②M=3,N=2,W=2 ③M=3,N=2,W=3 ④M=5,N=3,W=2 ⑤M=6,N=3,W=3

单选题0-1背包问题的回溯算法所需的计算时间为()AO(n2n)BO(nlogn)CO(2n)DO(n)