设α是某一方程组的解向量,k为某一常数,则kα也为该方程组的解向量。( )
设α是某一方程组的解向量,k为某一常数,则kα也为该方程组的解向量。( )
参考解析
解析:
相关考题:
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().A.矩阵A不可逆B.矩阵A的迹为零C.特征值-1,1对应的特征向量正交D.方程组AX=0的基础解系含有一个线性无关的解向量
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.
设A是m×n阶矩阵,下列命题正确的是().A.若方程组AX=0只有零解,则方程组AX=b有唯一解B.若方程组AX=0有非零解,则方程组AX=b有无穷多个解C.若方程组AX=b无解,则方程组AX=0一定有非零解D.若方程组AX=b有无穷多个解,则方程组AX=0一定有非零解
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。A、矩阵A的任意两个列向量线性相关B、矩阵A的任意两个列向量线性无关C、矩阵A的任一列向量是其余列向量的线性组合D、矩阵A必有一个列向量是其余列向量的线性组合
设A为4X5矩阵,且A的行向量组线性无关,则( ).《》( )A.A的列向量组线性无关B.方程组AX=b有无穷多解C.方程组AX=b的增广矩阵的任意四个列向量构成的向量组线性无关D.A的任意4个列向量构成的向量组线性无关
单选题设α(→)1,α(→)2,α(→)3,α(→)4是4维非零列向量组,A=(α(→)1,α(→)2,α(→)3,α(→)4),A*是A的伴随矩阵,已知方程组AX(→)=0(→)的基础解系为k(1,0,2,0)T,则方程组A*X(→)=0(→)的基础解系为( )。Aα(→)1,α(→)2,α(→)3Bα(→)1+α(→)2,α(→)2+α(→)3,3α(→)3Cα(→)2,α(→)3,α(→)4Dα(→)1+α(→)2,α(→)2+α(→)3,α(→)3+α(→)4,α(→)4+α(→)1
单选题设A为4×5矩阵,且A的行向量组线性无关,则( )。AA的列向量组线性无关B方程组AX(→)=b(→)有无穷多解C方程组AX(→)=b(→)的增广矩阵A(_)的任意四个列向量构成的向量组线性无关DA的任意4个列向量构成的向量组线性无关
单选题已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为( )。[2014年真题]Ax=k1(α1-α2)+k2(α1+α3)+α1Bx=k1(α1-α3)+k2(α2+α3)+α1Cx=k1(α2-α1)+k2(α2-α3)+α1Dx=k1(α2-α3)+k2(α1+α2)+α1
单选题n元线性方程组AX(→)=b(→)有唯一解的充要条件为( )。AA为方阵且|A|≠0B导出组AX(→)=0(→)仅有零解C秩(A)=nD系数矩阵A的列向量组线性无关,且常数向量b(→)与A的列向量组线性相关