单选题设f(x)=x3+ax2+bx在x=1处有极小值-2,则必有()。Aa=-4,b=1Ba=4,b=-7Ca=0,b=-3Da=b=1

单选题
设f(x)=x3+ax2+bx在x=1处有极小值-2,则必有()。
A

a=-4,b=1

B

a=4,b=-7

C

a=0,b=-3

D

a=b=1


参考解析

解析: 暂无解析

相关考题:

设,则f(x)的极小值为( )。{图1}

设函数f(x)在x=a的某个邻域内连续,且f(a)为极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )

函数z=f(x,y)处可微分,且fx'(x0,y0)=0,fy'(x0,:y0)=0,则f (x,y)在P0(x0,y0)处有什么极值情况?A.必有极大值B.必有极小值C.可能取得极值D.必无极值

设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有( )。A.(x-a)[f(x)-f(a)]≥0B.(x-a)[f(x)-f(a)]≤0C.D.

设函数f(x)在(a,b)内可微,且f′(x)≠0,则f(x)在(a,b)内(  )。A、 必有极大值B、 必有极小值C、 必无极值D、 不能确定有还是没有极值

函数y=f(x)在点x=x0处取得极小值,则必有:A.f′(x0)=0B.f′′(x0)>0C. f′(x0)=0 且 f(xo)>0D.f′(x0)=0 或导数不存在

函数y=f(x) 在点x=x0处取得极小值,则必有:A. f'(x0)=0B.f''(x0)>0C. f'(x0)=0且f''(x0)>0D.f'(x0)=0或导数不存在

函数z=f(x,y)在P0 (x0,y0)处可微分,且f'x (x0,y0)=0,f'y(x0,y0)=0,则f(x,y)在P0 (x0,y0)处有什么极值情况?A.必有极大值 B.必有极小值C.可能取得极值 D.必无极值

函数y = f (x)在点x = x0,处取得极小值,则必有:

设f(x)为开区间(a,b)上的可导函数,则下列命题正确的是( )。A.f(x)在(a,b)上必有最大值B.f(x)在(a,b)上必一致连续C.f(x)在(a,b)上必有D.f(x)在(a,b)上必连续

设f(x)=x3+ax2+bx在x=1处有极小值-2,则必有( )。A.a=-4,b=1B. a= 4,b = -7 C. a = 0,b = -3 D. a = b = 1

设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有( )。A. g[f(x)]在x= x0处有极大值 B.g[f(x)]在x=x0处有极小值C.g[f(x)]在x=x0处有最小值 D. g[f(x)]在x=x0处既无极值也无最小值

设函数f(x)=(1+x)ex,则函数f(x)( )A.有极小值B.有极大值C.既有极小值又有极大值D.无极值

设y=f(x)可导,点a0=2为f(x)的极小值点,且f(2)=3,则曲线y=f(x)在点(2,3)处的切线方程为______.

设f(x)和g(x)在(-∞,+∞)内可导,且f(x)<g(x),则必有( )《》( )

设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

设f(x)=x3+ax2+bx在x=1处有极小值-2,则必有()。A、a=-4,b=1B、a=4,b=-7C、a=0,b=-3D、a=b=1

设g(x)在(-∞,+∞)严格单调递减,且f(x)在x=x0处有极大值,则必有()。A、g[f(x)]在x=x0处有极大值B、g[f(x)]在x=x0处有极小值C、g[f(x)]在x=x0处有最小值D、g[f(x)]在x=x0既无极值也无最小值

设f(x,y)=x3-y3+3x2+3y2-9x,则f(x,y)在点(1,0)处().A、取得极大值B、取得极小值C、未取得极值D、是否取得极值无法判定

单选题已知f(x)=x3+ax2+bx在x=1处取得极小值-2,则a=(  ),b=(  )。A0;-3B1;-3C0;3D1;3

填空题已知f(x)=x3+ax2+bx在x=-1处取得极小值-2,则a=____,b=____。

单选题函数y=f(x)在点x=x0处取得极小值,则必有:()Af′(x0)=0Bf″(x0)0Cf′(x0)=0且f″(x0)0Df′(x0)=0或导数不存在

单选题设函数f(x)在(a,b)内可微,且f′(x)≠0,则f(x)在(a,b)内(  )。[2016年真题]A必有极大值B必有极小值C必无极值D不能确定有还是没有极值

单选题设f(x,y)=x3-y3+3x2+3y2-9x,则f(x,y)在点(1,0)处().A取得极大值B取得极小值C未取得极值D是否取得极值无法判定

单选题已知f(x)=x3+ax2+bx在x=-1处取得极小值-2,则a=(  ),b=(  )。Aa=2;b=3Ba=4;b=5Ca=4;b=3Da=2;b=5

单选题函数z=f(x,y)在P0(x0,y0)处可微分,且f′(x0,y0)=0,fy′(x0,y0)=0,则f(x,y)在P0(x0,y0)处有什么极值情况?()A必有极大值B必有极小值C可能取得极值D必无极值

单选题g(x)在(-∞,+∞)严格单调减,又f(x)在x=x0处有极大值,则必有():Ag(f(x))在x=x0处有极大值Bg(f(x))在x=x0处有极小值Cg(f(x))在x=x0处有最小值Dg(f(x))在x=x0既无极大也无极小值