单选题函数z=f(x,y)在P0(x0,y0)处可微分,且f′(x0,y0)=0,fy′(x0,y0)=0,则f(x,y)在P0(x0,y0)处有什么极值情况?()A必有极大值B必有极小值C可能取得极值D必无极值

单选题
函数z=f(x,y)在P0(x0,y0)处可微分,且f′(x0,y0)=0,fy′(x0,y0)=0,则f(x,y)在P0(x0,y0)处有什么极值情况?()
A

必有极大值

B

必有极小值

C

可能取得极值

D

必无极值


参考解析

解析: 暂无解析

相关考题:

以下结论正确的是()。 A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.

设函数y=f(x)在点x0处可导,且f′(x)0,曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为()。 A、0B、π/2C、锐角D、钝角

函数z=f(x,y)在点(x0,y0)处连续是z=f(x,y)在点(x0,y0)处存在一阶偏导数的(58)。A.充分条件B.必要条件C.充要条件D.既非充分,又非必要条件

函数z=f(x,y)处可微分,且fx'(x0,y0)=0,fy'(x0,:y0)=0,则f (x,y)在P0(x0,y0)处有什么极值情况?A.必有极大值B.必有极小值C.可能取得极值D.必无极值

函数f(x,y)在点P0(x0,y0)处有一阶偏导数是函数在该点连续的(  )。A、必要条件B、充分条件C、充分必要条件D、既非充分又非必要条件

若函数z=f(x,y)在点P0(x0,y0)处可微,则下面结论中错误的是(  )。

函数f(x,y)在点P0(x0,y0)处的一阶偏导数存在是该函数在此点可微分的(  )。 A. 必要条件 B. 充分条件 C. 充分必要条件 D. 既非充分条件也非必要条件

函数y=f(x)在点x=x0处取得极小值,则必有:A.f′(x0)=0B.f′′(x0)>0C. f′(x0)=0 且 f(xo)>0D.f′(x0)=0 或导数不存在

函数y=f(x) 在点x=x0处取得极小值,则必有:A. f'(x0)=0B.f''(x0)>0C. f'(x0)=0且f''(x0)>0D.f'(x0)=0或导数不存在

函数z=f(x,y)在P0 (x0,y0)处可微分,且f'x (x0,y0)=0,f'y(x0,y0)=0,则f(x,y)在P0 (x0,y0)处有什么极值情况?A.必有极大值 B.必有极小值C.可能取得极值 D.必无极值

z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件?A.必要条件B.充分条件C.充要条件D.无关条件

若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微

若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()A、连续B、偏导数存在C、偏导数连续D、切平面存在

若连续函数y=f(x)在x0点不可导,则曲线y=f(x)在(x0,f(x0))点没有切线.

z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件()?A、必要条件B、充分条件C、充要条件D、无关条件

下列结论不正确的是()。A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

下列四类函数中,有性质“对任意的x0,y0,函数f(x)满足f(x+y)=f(x)f(y)”的是()。A、幂函数B、对数函数C、指数函数D、余弦函数

G90 G53 G0 X0 Y0 Z0;可用哪个程序段代替?()A、 G91 G28 X0 Y0 Z0B、 G90 G28 X0 Y0 Z0C、 GO G90 G54 X0 Y0 Z0D、 G0 G90 G55 X0 Y0 Z0;

G92X0Y0Z10,表示刀位点在工件坐标系中坐标值是()A、X0,Y0,Z0B、X0,Y0,Z10C、X0,Y0,Z-10

下列结论不正确的是()。A、y=f(x)在点x0处可微,则f(x)在点x0处连续B、y=f(x)在点x0处可微,则f(x)在点x0处可导C、y=f(x)在点x0处连续,则f(x)在点x0处可微D、y=f(x)在点x0处可导,则f(x)在点x0处连续

单选题以下关于二元函数的连续性的说法正确是(  )。A若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续B若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续C若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续D以上说法都不对

判断题若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微A对B错

单选题考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。A②⇒③⇒①B③⇒②⇒①C③⇒④⇒①D③⇒①⇒④

单选题设f(x,y)与φ(x,y)均为可微函数,且φy′(x,y)≠0。已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是(  )。A若fx′(x0,y0)=0,则fy′(x0,y0)=0B若fx′(x0,y0)=0,则fy′(x0,y0)≠0C若fx′(x0,y0)≠0,则fy′(x0,y0)=0D若fx′(x0,y0)≠0,则fy′(x0,y0)≠0

单选题若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()A连续B偏导数存在C偏导数连续D切平面存在

单选题z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件()?A必要条件B充分条件C充要条件D无关条件

单选题可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是(  )。Af(x0,y)在y=y0处的导数等于零Bf(x0,y)在y=y0处的导数大于零Cf(x0,y)在y=y0处的导数小于零Df(x0,y)在y=y0处的导数不存在