填空题方程dy/dx+y=y2的通解为____。
填空题
方程dy/dx+y=y2的通解为____。
参考解析
解析:
原方程为dy/dx+y=y2,令1/y=u,则-(1/y2)dy/dx-1/y=-1,即du/dx-u=-1,故u=e∫dx[-∫e-∫dxdx+C]=ex(e-x+C)=Cex+1。故方程的通解为y=1/(Cex+1)。
原方程为dy/dx+y=y2,令1/y=u,则-(1/y2)dy/dx-1/y=-1,即du/dx-u=-1,故u=e∫dx[-∫e-∫dxdx+C]=ex(e-x+C)=Cex+1。故方程的通解为y=1/(Cex+1)。
相关考题:
若 Normal 0 7.8 磅 0 2 false false false EN-US ZH-CN X-NONE MicrosoftInternetExplorer4 y1·y2为二阶线性常系数微分方程y〞+p1y'+p2y=0的两个特解,则C1y1+C2y2().A.为所给方程的解,但不是通解B.为所给方程的解,但不一定是通解C.为所给方程的通解D.不为所给方程的解
设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程通解是( )。A.C[y1(x)-y2(x)]B.y1(x)+C[y1(x)-y2(x)]C.C[y1(x)+y2(x)]D.y1(x)+C[y1(x)+y2(x)]
设非齐次线性微分方程y+P(x)y=Q(x)有两个不同的解析:y1(x)与y2(x),C为任意常数,则该方程的通解是( ).A.C[(y1(x)-y2(x)]B.y1(x)+C[(y1(x)-y2(x)]C.C[(y1(x)+y2(x)]D.y1(x)+C[(y1(x)+y2(x)]
单选题(2012)已知微分方程y′+p+(x)y=q(x)[q(x)≠0]有两个不同的特解y1(x),y2(x),则该微分方程的通解是:(c为任意常数)()Ay=c(y1-y2)By=c(y1+y2)Cy=y1+c(y1+y2)Dy=y1+c(y1-y2)
单选题设非齐次线性微分方程y′+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是( )。AC[y1(x)-y2(x)]By1(x)+C[y1(x)-y2(x)]CC[y1(x)+y2(x)]Dy1(x)+C[y1(x)+y2(x)]
单选题函数y1(x)、y2(x)是微分方程y′+p(x)y=0的两个不同特解,则该方程的通解为( )。Ay=c1y1+c2y2By=y1+cy2Cy=y1+c(y1+y2)Dy=c(y1-y2)
单选题已知微分方程y′+p(x)y=q(x)(q(x)≠0)有两个不同的解y1(x),y2(x),C为任意常数,则该微分方程的通解是( )。[2012年真题]Ay=C(y1-y2)By=C(y1+y2)Cy=y1+C(y1+y2)Dy=y1+C(y1-y2)