问答题设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b)>0,f(a)·f[(a+b)/2]<0。试证:对任意实数k,∃ξ∈(a,b),使得f′(ξ)=kf(ξ)。

问答题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)·f(b)>0,f(a)·f[(a+b)/2]<0。试证:对任意实数k,∃ξ∈(a,b),使得f′(ξ)=kf(ξ)。

参考解析

解析: 暂无解析

相关考题:

设f(x)在[0,1]上可导,且满足f(1)=∫01xf(x)dx,证明:必有一点ξ∈(0,1),使得ξf(ξ)+f(ξ)=0.

设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分条件是( )A.f(a)=0且f′(a)=0B.f(a)=0且f′(a)≠0C.f(a)>0且f′(a)>D.f(a)<0且f′(a)<

设函数 f (x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有 f ' (x) >0, f '' (x) >0,则在(- ∞ ,0)内必有:(A) f ' > 0, f '' > 0 (B) f ' 0(C) f ' > 0, f ''

设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

设f(x)二阶可导,f(0)= f(1),且f(x)在[0,1]上的最小值为—1.证明:

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.

设f(x)在[a,b]上可导,且f(a)f(b)小于0,

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0, f''(x)>0,则在(-∞,0)内必有:A. f'(x)>0, f''(x)>0B.f'(x)<0, f''(x)>0C. f'(x)>0, f''(x)<0D. f'(x)<0, f''(x)<0

设,在x=0连续,且对任何x,y∈R有f(x﹢y)=f(x)﹢f(y)证明:(1)f在R上连续;(2)f(x)=xf(1)。

设f(x)是R上的可导函数,且f(x)>0。若f′(x)-3x---2f(x)=0,且f(0)=1,求f(x)。

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)>0,f''(x)>0,则在(-∞,0)内必有( )。A. f'(x)>0,f''(x)>0 B. f(x) 0C. f'(x)>0,f''(x)

A.F(x)在x=0点不连续B.F(x)在(-∞,+∞)内连续,在x=0点不可导C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x)D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f'(x)0,f"(x)0,则在(-∞,0)内必有()。A、f'(x)0,f"(x)0B、f'(x)0,f"(x)0C、f'(x)O,f"(x)0D、f'(x)0,f"(x)0

问答题设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f′(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在(a,a-f(a)/k)内有唯一实根。

问答题设f′(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f[(a+b)/2]<0,试证至少存在一个点ξ∈(a,b)使f′(ξ)=f(ξ)。

问答题设f(x)在[0,π]上连续,在(0,π)内可导,证明:必∃ξ∈(0,π),使f′(ξ)+3f(ξ)cotξ=0。

问答题设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)。证明:在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

问答题设f(x)在(a,b)内二阶可导,且f″(x)≥0,证明:对于(a,b)内任意两点x1、x2及0≤t≤1,有f[(1-t)x1+tx2]≤(1-t)f(x1)+tf(x2)。

单选题设f(x)在(-∞,+∞)内可导,且对任意x2>x1,都有f(x2)>f(x1),则正确的结论是(  )。A对任意x,f′(x)>0B对任意x,f′(x)≤0C函数-f(-x)单调增加D函数f(-x)单调增加

问答题设在[0,+∞]上函数f(x)有连续导数,且f′(x)≥k>0,f(0)<0,证明:在(0,+∞]内有且仅有一个零点。

单选题函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f′(x)≥k>0,则在(0,+∞)内f(x)(  )。A没有零点B至少有一个零点C只有一个零点D有无零点不能确定

问答题设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1/2。证明:必∃ξ、η∈(a,b),使e2ξ=(eb+ea)[f′(η)+f(η)]eη。

问答题设函数f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:必∃ξ∈(0,1)使ξ2f″(ξ)+4ξf′(ξ)+2f(ξ)=0。

问答题设f(x)在闭区间[0,c]上连续,其导数f′(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中a,b满足条件0≤a≤b≤a+b≤c。

问答题设f(x)在[a,b]上连续(a>0),在(a,b)内可导,证明:必∃ξ∈(a,b),使[f(a)-f(ξ)]/(ξ2-b2)=f′(ξ)/(2ξ)。

问答题设f(x),f′(x)在[a,b]上连续,f″(x)在(a,b)内存在,f(a)=f(b)=0,且存在c∈(a,b)使f(c)>0。证明:必∃ξ∈(a,b)使f″(ξ)<0。