用二分法求解方程f(x)=x3-x-1=0在[1,2]的近似根,准确到10-3,要达到此精度至少迭代()次。
用二分法求解方程f(x)=x3-x-1=0在[1,2]的近似根,准确到10-3,要达到此精度至少迭代()次。
相关考题:
为了用二分法求函数f(x)=x3-2x2-0.1的根(方程f(x)=0的解),可以选择初始区间(64)。也就是说,通过对该区间逐次分半可以逐步求出该函数的一个根的近似值。A.[-2,-1]B.[-1,1]C.[1,2]D.[2,3]
若a,6是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f(x)=0在(a,b)内( ).A.只有一个根B.至少有一个根C.没有根D.以上结论都不对
用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。A、f(x0)f″(x)0B、f(x0)f′(x)0C、f(x0)f″(x)0D、f(x0)f′(x)0
若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A、只有一个根B、至少有一个根C、没有根D、以上结论都不对
单选题用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。Af(x0)f″(x)0Bf(x0)f′(x)0Cf(x0)f″(x)0Df(x0)f′(x)0
单选题用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。Ay=φ(x)与x轴交点的横坐标By=x与y=φ(x)交点的横坐标Cy=x与x轴的交点的横坐标Dy=x与y=φ(x)的交点
问答题比较求ex+10x-2=0的根到三位小数所需的计算量;1)在区间[0,1]内用二分法;2)用迭代法xk+1=(2-exk)/10,取初值x0=0。