用二分法求解方程f(x)=x3-x-1=0在[1,2]的近似根,准确到10-3,要达到此精度至少迭代()次。

用二分法求解方程f(x)=x3-x-1=0在[1,2]的近似根,准确到10-3,要达到此精度至少迭代()次。


相关考题:

正割法.二分法.迭代法.牛顿法都要求方程f(a)f(b) 正割法.二分法.迭代法.牛顿法都要求方程f(a)f(b)

用迭代法求方程f(x)=x^3-x-1=0的根,取x0=1.5。() A、1.5B、1.35721C、1.32494D、1.32588

用牛顿迭代法求解方程x-cosx=0,要求准确至10^-5。() A、1B、0.750.6C、0.739113D、0.739085

解非线性方程f(x)=0的牛顿迭代法在重根附近() A、线性收敛B、三次收敛C、平方收敛D、不收敛

设有方程f(x)=0在区间[a,b]上有实根,且f(a)与f(b)异号,利用二分法求该方程在区间[a,b]上的一个实根,采用的算法设计技术为( )

为了用二分法求函数f(x)=x3-2x2-0.1的根(方程f(x)=0的解),可以选择初始区间(64)。也就是说,通过对该区间逐次分半可以逐步求出该函数的一个根的近似值。A.[-2,-1]B.[-1,1]C.[1,2]D.[2,3]

补充程序Ccon031.C,使其用牛顿迭代法求方程2x3-4x2+3x-6=0在1.5附近的根。

用迭代法求解方程x5-x-1=0,下列迭代公式不可能正确的是(6)。A.B.C.D.

设函数f(x)在区间[0,1]上具有2阶导数,且,证明:  (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;  (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.

阐述用二分法求解方程近似解的适用范围及步骤,并说明高中数学新课程引入二分法的意义。

阐述用二分法求解方程近似解的适用范围及步骤.并说明高中数学新课程中引入二分法的意义。

若a,6是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f(x)=0在(a,b)内( ).A.只有一个根B.至少有一个根C.没有根D.以上结论都不对

用二分法求方程f(x)=x3+x-1=0在区间[0,1]内的根,进行一步后根的所在区间为(),进行两步后根的所在区间为()。

若用二分法求方程f(x)=0区间[1,2]内的根,要求精确到第3位小数,则需要对分()次。

用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。A、f(x0)f″(x)0B、f(x0)f′(x)0C、f(x0)f″(x)0D、f(x0)f′(x)0

如果用二分法求方程x3+x-4=0在区间[1,2]内的根精确到三位小数,需对分()次。

比较求ex+10x-2=0的根到三位小数所需的计算量;1)在区间[0,1]内用二分法;2)用迭代法xk+1=(2-exk)/10,取初值x0=0。

解非线性方程f(x)=0的牛顿迭代法具有()收敛。

若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A、只有一个根B、至少有一个根C、没有根D、以上结论都不对

填空题用二分法求方程f(x)=x3+x-1=0在区间[0,1]内的根,进行一步后根的所在区间为(),进行两步后根的所在区间为()。

填空题如果用二分法求方程x3+x-4=0在区间[1,2]内的根精确到三位小数,需对分()次。

填空题用二分法求解方程f(x)=x3-x-1=0在[1,2]的近似根,准确到10-3,要达到此精度至少迭代()次。

填空题若用二分法求方程f(x)=0区间[1,2]内的根,要求精确到第3位小数,则需要对分()次。

填空题解非线性方程f(x)=0的牛顿迭代法具有()收敛。

单选题用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。Af(x0)f″(x)0Bf(x0)f′(x)0Cf(x0)f″(x)0Df(x0)f′(x)0

单选题用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=φ(x),则f(x)=0的根是()。Ay=φ(x)与x轴交点的横坐标By=x与y=φ(x)交点的横坐标Cy=x与x轴的交点的横坐标Dy=x与y=φ(x)的交点

问答题比较求ex+10x-2=0的根到三位小数所需的计算量;1)在区间[0,1]内用二分法;2)用迭代法xk+1=(2-exk)/10,取初值x0=0。