填空题用二分法求方程f(x)=x3+x-1=0在区间[0,1]内的根,进行一步后根的所在区间为(),进行两步后根的所在区间为()。

填空题
用二分法求方程f(x)=x3+x-1=0在区间[0,1]内的根,进行一步后根的所在区间为(),进行两步后根的所在区间为()。

参考解析

解析: 暂无解析

相关考题:

设函数f(x)=x4-4x+5.(I)求f(x)的单调区间,并说明它在各区间的单调性;(Ⅱ)求f(x)在区间[0,2]的最大值与最小值.

用变端点弦截法求方程f(x)=x^3-x-1=0在区间[a,b]的根。() A、1.324718B、1.315962C、1.266667D、1.5

设有方程f(x)=0在区间[a,b]上有实根,且f(a)与f(b)异号,利用二分法求该方程在区间[a,b]上的一个实根,采用的算法设计技术为( )

为了用二分法求函数f(x)=x3-2x2-0.1的根(方程f(x)=0的解),可以选择初始区间(64)。也就是说,通过对该区间逐次分半可以逐步求出该函数的一个根的近似值。A.[-2,-1]B.[-1,1]C.[1,2]D.[2,3]

设有方程f(x)一0在区间[a,b]上有实根,且f(a)与f(b)异号,利用二分化法求该方程在区间[a’b]上的一个实根,采用的算法设计技术为

设f(x)在闭区间[0,1]上连续,在(0,1)内可导,且f(0)=0,

一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度,则该细棒的质心坐标=

设函数f(x)在区间[0,1]上具有2阶导数,且,证明:  (Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;  (Ⅱ)方程在区间(0,1)内至少存在两个不同实根.

函数f(x)=2x+3x的零点所在的一个区间是( )A.(-2,-l)B.(-1,0)C.(0,1)D.(1,2)

射手向区间[0,1]射击一次,落点服从均匀分布,若射中[0,1/2]区间,则观众甲中奖;若射中区间,则观众乙中奖。若甲中奖和乙中奖这两个事件是独立的,求x的值。

已知函数 (1)求f(x)单调区间与值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1]。若对于任意x1∈[0,1],总存在x0∈[0,1]使g(x0)=f(x1)成立,求a的取值范围。

已知函数f(x)在区间(0,1)内可导,则以下结论正确的是( )。

用二分法求方程f(x)=x3+x-1=0在区间[0,1]内的根,进行一步后根的所在区间为(),进行两步后根的所在区间为()。

若用二分法求方程f(x)=0区间[1,2]内的根,要求精确到第3位小数,则需要对分()次。

随机变量的分布函数的值域是()A、开区间(0,1)B、半开半闭区间(0,1]C、闭区间[0,1]D、半开半闭区间[0,1)

如果用二分法求方程x3+x-4=0在区间[1,2]内的根精确到三位小数,需对分()次。

比较求ex+10x-2=0的根到三位小数所需的计算量;1)在区间[0,1]内用二分法;2)用迭代法xk+1=(2-exk)/10,取初值x0=0。

跨区间及全区间无缝线路采用Ⅱ型及既有轨枕配置时,其配置根数为()。A、1667根/kmB、1680根/kmC、1840根/kmD、1760根/km

跨区间及全 区间无缝线路采用Ⅲ型混凝土枕时,其配置根数为()。A、1667根/kmB、1680根/kmC、1840根/kmD、1760根/km

若a,b是方程f(x)=0的两个相异的实根,f(x)在[a,b]上连续,且在(a,b)内可导,则方程f’(x)=0在(a,b)内().A、只有一个根B、至少有一个根C、没有根D、以上结论都不对

问答题设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x。

单选题求方程f(x)=0在区间[0,1]内的根,要求误差不超过10-4,那么二分次数n十1≥( )。A12B13C14D15

填空题如果用二分法求方程x3+x-4=0在区间[1,2]内的根精确到三位小数,需对分()次。

单选题跨区间及全 区间无缝线路采用Ⅲ型混凝土枕时,其配置根数为()。A1667根/kmB1680根/kmC1840根/kmD1760根/km

单选题二分法求f(x)=0在[α,B.]内的根,二分次数n满足( )。A只与函数f(x)有关B只与根的分离区间以及误差限有关C与根的分离区间、误差限及函数f(x)有关D只与误差限有关

填空题若用二分法求方程f(x)=0区间[1,2]内的根,要求精确到第3位小数,则需要对分()次。

问答题比较求ex+10x-2=0的根到三位小数所需的计算量;1)在区间[0,1]内用二分法;2)用迭代法xk+1=(2-exk)/10,取初值x0=0。