随机变量X的数学期望E(X)=2,方差D(X)=4,则E(X2)=()

随机变量X的数学期望E(X)=2,方差D(X)=4,则E(X2)=()


相关考题:

X为随机变量,E[X]为其期望,则下面有关X的期望,正确的是:() AE[2X]=2XBE[2X]=2E[X]CE[2X]=2+XDE[2+X]=2X

设随机变量X的数学期望EX = 1,且满足P{|X-1|>=2}=1/16,根据切比雪夫不等式,X的方差必满足() A.DX>=1/4B.DX>=1/2C.DX>=1/16D.DX>=1

设X服从λ=2的泊松分布,则x的数学期望和方差分别是多少?

设随机变量x的分布函数为则数学期望E(X)等于(  )。

设X1,X2,…,Xn,…相互独立,则X1,X2,…,Xn,…满足辛钦大数定律的条件是( ) A.X1,X2,…,Xn,…同分布且有相同的数学期望与方差B.X1,X2,…,Xn,…同分布且有相同的数学期望C.X1,X2,…,Xn,…为同分布的离散型随机变量D.X1,X2,…,Xn,…为同分布的连续型随机变量

已知某个连续型随机变量X的数学期望E(X)=1,则X的概率密度函数不可能是( ).A.B.C.D.

已知离散型随机变量X的概率分布为(1)求常数a;(2)求X的数学期望EX及方差DX.

设离散型随机变量X的概率分布为求X的数学期望EX及方差DX.

设离散型随机变量x的分布列为①求常数a的值;②求X的数学期望E(X).

设随机变量X1,X2,…,Xn相互独立且在[0,na]上服从均匀分布,令U=max{X1,X2,…,Xn},求U的数学期望与方差.

设随机变量X的数学期望和方差分别为E(X)=μ,D(x)=σ^2,用切比雪夫不等式估计P{|X一μ|

设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X-E(X)|≥2}≤_______.

设随机变量x的概率密度为F(x)为X的分布函数,EX为X的数学期望,则P{F(X)>EX-1}=________.

设随机变量126X,X,L,X的期望均为0,方差均为1,且任意两个随机变量的相关系数都为1/3,令123Y=X+X+X,456Z=X+X+X,则Y与Z的相关系数为()。A、1/2B、3/5C、2/3D、5/9E、1/24

若随机变量Y是X的线性函数,Y=aX+b(a﹥0)且随机变量X存在数学期望与方差,则X与Y的相关系数ρXY=()A、aB、a2C、0D、1

设随机变量X的数学期望E(X)=75,D(X)=5,且P{|X-75|≥k}≤0.05,则k≥()。

若随机变量X服从参数为n和p的二项分布,则它的数学期望为(),方差是()

随机变量X的概率分布如:f(X)=X/6X=1,,2,3。则X的数学期望是()A、0.333B、0.500C、2.000D、2.333

已知随机变量X~N(0, 9),那么该随机变量X的期望为(),方差为()

设随机变量X和Y的数学期望都是2,方差分别为1和4,而相关系数为0.5,则根据切比雪夫不等式P{|X-Y|≥6}≤()。

设随机变量X与Y相互独立,它们分别服从参数λ=2的泊松分布与指数分布.记Z=X-2Y,则随机变量Z的数学期望与方差分别等于().A、1,3B、-2,4C、1,4D、-2,6

随机变量X的数学期望EX=μ,方差DX=σ2,k、b为常数,则有E(kX+b)=();D(kX+B)=()。

设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P{|X+Y|≥6}≤()。

设随机变量X的方差为2,则P{|X-E(X)|≥2}≤()。

多选题数学期望的性质包括()A设c为常数,则E(c)=cB设X为随机变量,α为常数,则E(αX)=αE(X)C设X、y是两个随机变量,则E(X±Y)=E(X)+E(Y)D设X、y是相互独立的随机变量,则E(XY)=E(X)E(Y)E设c为常数,则E(c)=0。

单选题设随机变量126X,X,L,X的期望均为0,方差均为1,且任意两个随机变量的相关系数都为1/3,令123Y=X+X+X,456Z=X+X+X,则Y与Z的相关系数为()。A1/2B3/5C2/3D5/9E1/24

单选题设随机变量X与Y相互独立,它们分别服从参数λ=2的泊松分布与指数分布.记Z=X-2Y,则随机变量Z的数学期望与方差分别等于().A1,3B-2,4C1,4D-2,6