在含有 15 个结点的平衡二叉树上,查找关键字为 28 的结点,则依次比较的关键字有可能是()。A.30,36B.28,48,28C.48,18,38,28D.60,30,50,40,38,36
在含有 15 个结点的平衡二叉树上,查找关键字为 28 的结点,则依次比较的关键字有可能是()。
A.30,36
B.28,48,28
C.48,18,38,28
D.60,30,50,40,38,36
参考答案和解析
48,18,38,28
相关考题:
下列关于 n个结点的m阶B树的说法中,正确的是_______。 A、树中每个结点最多有 m个关键字B、树中叶子结点的个数为 n+1C、在B树上进行查找的过程是顺指针找结点和在结点内找关键字交叉进行的过程。D、树中所有叶子结点都在同一层,并且不带任何信息E、树中每个结点最多有 m-1个关键字F、树中每个结点最多有 m+1个关键字
● 对于二叉查找树(Binary Search Tree) ,若其左子树非空,则左子树上所有结点的值均小于根结点的值;若其右子树非空,则右子树上所有结点的值均大于根结点的值;左、右子树本身就是两棵二叉查找树。因此,对任意一棵二叉查找树进行 (61) 遍历可以得到一个结点元素的递增序列。在具有 n 个结点的二叉查找树上进行查找运算,最坏情况下的算法复杂度为 (62) 。(61)A. 先序B. 中序C. 后序D. 层序(62)A. O(n2B. O(nlog2n)C. O(log2n)D. O(n)
由关键字序列(12,7,36,25,18,2)构造一棵二叉排序树(初始为空,第一个关键字作为根结点插入,此后对于任意关键字,若小于根结点的关键字,则插入左子树中,若大于根结点的关键字,则插入右子树中,且左、右子树均为二叉排序树) ,该二叉排序树的高度(层数)为 ( ) 。A. 6B. 5C. 4D. 3请帮忙给出正确答案和分析,谢谢!
当在二叉排序树中插入一个新结点时,若树中不存在与待插入结点的关键字相同的结点,且新结点的关键字小于根结点的关键字,则新结点将成为() A.左子树的叶子结点B.左子树的分支结点C.右子树的叶子结点D.右子树的分支结点
在含有27个结点的二叉排序树上查找关键字为35的结点,则依次比较的关键字有可能是()。 A.28,36,18,46,35B.18,36,28,46,35C.46,28,18,36,35D.46,36,18,28,35
对于二叉查找树(Binary Search Tree),若其左子树非空,则左子树上所有结点的值均小于根结点的值;若其右子树非空,则右子树上所有结点的值均大于根结点的值。左、右子树本身就是两棵二叉查找树。因此,对任意一棵二叉查找树进行(61)遍历可以得到一个结点元素的递增序列。在具有n个结点的二叉查找树上进行查找运算,最坏情况下的算法复杂度为(62)。A.先序B.中序C.后序D.层序
● 对于n 个元素的关键字序列{k1,k2,…,kn}, 若将其按次序对应到一棵具有 n 个结点的完全二叉树上, 使得任意结点都不大于其孩子结点(若存在孩子结点), 则称其为小顶堆。根据以上定义, (43) 是小顶堆
对于n个元素的关键字序列{k1,k2,…,kn},若将其按次序对应到一棵具有n个结点的完全二叉树上,使得任意结点都不大于其孩子结点(若存在孩子结点),则称其为小顶堆。根据以上定义,(43)是小顶堆。A.B.C.D.
阅读以下说明、C函数和问题,将解答填入答题纸的对应栏内。【说明】二叉查找树又称为二叉排序树,它或者是一棵空树,或者是具有如下性质的二叉树:●若它的左子树非空,则其左子树上所有结点的键值均小于根结点的键值;●若它的右子树非空,则其右子树上所有结点的键值均大于根结点的键值;●左、右子树本身就是二叉查找树。设二叉查找树采用二叉链表存储结构,链表结点类型定义如下:typedefstructBiTnode{intkey_value;/*结点的键值,为非负整数*/structBiTnode*left,*right;/*结点的左、右子树指针*/}*BSTree;函数find_key(root,key)的功能是用递归方式在给定的二叉查找树(root指向根结点)中查找键值为key的结点并返回结点的指针;若找不到,则返回空指针。【函数】BSTreefind_key(BSTreeroot,intkey){if((1))returnNULL;elseif(key==root-key_value)return(2);elseif(keykey_value)return(3);elsereturn(4);}【问题1】请将函数find_key中应填入(1)~(4)处的字句写在答题纸的对应栏内。【问题2】若某二叉查找树中有n个结点,则查找一个给定关键字时,需要比较的结点个数取决于(5).
阅读下列说明、图和C代码。[说明5-1]B树是一种多叉平衡查找树。一棵m阶的B树,或为空树,或为满足下列特性的m叉树:①树中每个结点最多有m棵子树;②若根结点不是叶子结点,则它至少有两棵子树;⑧除根之外的所有非叶子结点至少有[m/2]棵子树;④所有的非叶子结点中包含下列数据信息:(n,A0,K1,A1,K2,A2, …,Kn,An)其中:Ki(i=1,2,…,n)为关键字,且Ki<Ki+1(i=1,2,…,n-1);Ai(i=0,1,…,n)为指向子树根结点的指针,且指针Ai-1,所指子树中所有结点的关键字均小于Ki,Ai+1,所指子树中所有结点的关键字均大于Ki,n为结点中关键字的数目。⑤所有的叶子结点都出现在同一层次上,并且不带信息(可以看作是外部结点或查找失败的结点,实际上这些结点不存在,指向这些结点的指针为空)。例如,一棵4阶B树如下图所示(结点中关键字的数目省略)。B树的阶M、bool类型、关键字类型及B树结点的定义如下:define M 4 /*B树的阶*/typedef enum {FALSE=0,TRUE=1}bool;typedef int ElemKeyType;typedef struct BTreeNode {int numkeys; /*结点中关键字的数日*/struct BTreeNode*parent; /*指向父结点的指针,树根的父结点指针为空*/struct BTreeNode *A[M]; /*指向子树结点的指针数组*/ElemKeyType K[M]; /*存储关键字的数组,K[0]闲置不用*/}BTreeNode;函数SearchBtree(BTreeNode*root,ElemKcyTypeakey,BTreeNode:*pb)的功能是:在给定的一棵M阶B树中查找关键字akey所在结点,若找到则返回TRUE,否则返回 FALSE。其中,root是指向该M阶B树根结点的指针,参数ptr返回akey所在结点的指针,若akey不在该B树中,则ptr返回查找失败时空指针所在结点的指针。例如,在上图所示的4阶B树中查找关键字25时,ptr返回指向结点e的指针。注;在结点中查找关键字akey时采用二分法。[函数5-1]bool SearchBtree(BTreeNode* root, ElemKeyType akey, BTreeNode **ptr){int lw, hi, mid;BTreeNode*p = root;*ptr = NULL;while ( p ) {1w = 1; hi=(1);while (1w <= hi) {mid = (1w + hi)/2;if (p -> K[mid] == akey) {*ptr = p;return TRUE;}elseif ((2))hi=mid - 1;else1w = mid + 1;}*ptr = p;p = (3);}return FALSE;}[说明5-2]在M阶B树中插入一个关键字时,首先在最接近外部结点的某个非叶子结点中增加一个关键字,若该结点中关键字的个数不超过M-1,则完成插入;否则,要进行结点的“分裂”处理。所谓“分裂”,就是把结点中处于中间位置上的关键字取出来并插入其父结点中,然后以该关键字为分界线,把原结点分成两个结点。“分裂”过程可能会一直持续到树根,若树根结点也需要分裂,则整棵树的高度增加1。例如,在上图所示的B树中插入关键字25时,需将其插入结点e中。由于e中已经有3个关键字,因此将关键字24插入结点e的父结点b,并以24为分界线将结点e分裂为e1和e2两个结点,结果如下图所示。函数Isgrowing(BTreeNode*root,ElemKeyTypeakey)的功能是:判断在给定的M阶B树中插入关键字akey后,该B树的高度是否增加,若增加则返回TRUE,否则返回FALSE。其中,root是指向该M阶B树根结点的指针。在函数Isgrwing中,首先调用函数SearchBtree(即函数5-1)查找关键字akey是否在给定的M阶B树中,若在,则返回FALSE(表明无需插入关键字akey,树的高度不会增加);否则,通过判断结点中关键字的数目考查插入关键字akey后该B树的高度是否增加。[函数5-2]bool Isgrowing(BTreeNode* root, ElernKeyType akey){ BTreeNode *t, *f;if( !SearchBtree((4) )
以下关于二叉排序树(或二叉查找树、二叉搜索树)的叙述中,正确的是( )A.对二叉排序树进行先序、中序和后序遍历,都得到结点关键字的有序序列B.含有N个结点的二叉排序树高度为【log2n】+1C.从根到任意二个叶子结点的路径上,结点的关键字呈现有序排列的特点D.从左到右排列同层次的结点,’其关键字呈现有序排列的特点
在含有12个结点的平衡二叉树上,查找关键字为35(存在该结点)的结点,则依次比较的关键字有可能是()。A.46,36,18,20,28,35B.47,37,18,27,36C.27,48,39,43,37D.15,45,55,35
以下关于二叉排序树的说法正确的是()。Ⅰ.在二叉排序树中,每个结点的关键字都比左孩子关键字大,比右孩子关键字小Ⅱ.每个结点的关键字都比左孩子关键字大,比右孩子关键字小,这样的二叉树都是二叉排序树Ⅲ,在二叉排序树中,新插入的关键字总是处于最底层Ⅳ.在二叉排序树中,新结点总是作为叶子结点来插入的Ⅴ.二叉排序树的查找效率和二叉排序树的高度有关A.Ⅰ、Ⅱ、Ⅳ、ⅤB.Ⅱ、Ⅲ、ⅣC.Ⅰ、Ⅲ、ⅤD.Ⅰ、Ⅳ、Ⅴ
设二叉排序树中关键字由1~1000的整数构成,现要查找关键字为363的结点,下列关键字序列不可能是在二叉排序树上查找到的序列是()。A.2,252,401,398,330,344,397,363B.924,220,911,244,898,258,362,363C.925,202,911,240,912,245,363D.2,399,387,219,266,382,381,278,363
依次插入关键字(51, 37,60,54,49,32,79,27,36)生成二叉排序树,则查找关键字值54(查找成功),需做的关键字比较次数为();查找关键字值22(查找失败),需做的关键字比较次数为()
关于二叉排序树描述有误的是()。A、二叉排序的右子树上结点的关键字小于左子树上的结点的关键字B、二叉排序的左子树上结点的关键字小于右子树上的结点的关键字C、二叉排序的根节点的关键大于右子树上结点的关键字D、二叉排序的根节点的关键大于左子树上结点的关键字
填空题依次插入关键字(51, 37,60,54,49,32,79,27,36)生成二叉排序树,则查找关键字值54(查找成功),需做的关键字比较次数为();查找关键字值22(查找失败),需做的关键字比较次数为()
单选题若从二叉树的根结点到其它任一结点的路径上所经过的结点序列按其关键字递增有序,则该二叉树是()。A二叉排序树B赫夫曼树C堆D平衡二叉树