阅读下列说明、图和C代码。[说明5-1]B树是一种多叉平衡查找树。一棵m阶的B树,或为空树,或为满足下列特性的m叉树:①树中每个结点最多有m棵子树;②若根结点不是叶子结点,则它至少有两棵子树;⑧除根之外的所有非叶子结点至少有[m/2]棵子树;④所有的非叶子结点中包含下列数据信息:(n,A0,K1,A1,K2,A2, …,Kn,An)其中:Ki(i=1,2,…,n)为关键字,且Ki<Ki+1(i=1,2,…,n-1);Ai(i=0,1,…,n)为指向子树根结点的指针,且指针Ai-1,所指子树中所有结点的关键字均小于Ki,Ai+1,所指子树中所有结点的关键字均大于Ki,n为结点中关键字的数目。⑤所有的叶子结点都出现在同一层次上,并且不带信息(可以看作是外部结点或查找失败的结点,实际上这些结点不存在,指向这些结点的指针为空)。例如,一棵4阶B树如下图所示(结点中关键字的数目省略)。B树的阶M、bool类型、关键字类型及B树结点的定义如下:define M 4 /*B树的阶*/typedef enum {FALSE=0,TRUE=1}bool;typedef int ElemKeyType;typedef struct BTreeNode {int numkeys; /*结点中关键字的数日*/struct BTreeNode*parent; /*指向父结点的指针,树根的父结点指针为空*/struct BTreeNode *A[M]; /*指向子树结点的指针数组*/ElemKeyType K[M]; /*存储关键字的数组,K[0]闲置不用*/}BTreeNode;函数SearchBtree(BTreeNode*root,ElemKcyTypeakey,BTreeNode:*pb)的功能是:在给定的一棵M阶B树中查找关键字akey所在结点,若找到则返回TRUE,否则返回 FALSE。其中,root是指向该M阶B树根结点的指针,参数ptr返回akey所在结点的指针,若akey不在该B树中,则ptr返回查找失败时空指针所在结点的指针。例如,在上图所示的4阶B树中查找关键字25时,ptr返回指向结点e的指针。注;在结点中查找关键字akey时采用二分法。[函数5-1]bool SearchBtree(BTreeNode* root, ElemKeyType akey, BTreeNode **ptr){int lw, hi, mid;BTreeNode*p = root;*ptr = NULL;while ( p ) {1w = 1; hi=(1);while (1w <= hi) {mid = (1w + hi)/2;if (p -> K[mid] == akey) {*ptr = p;return TRUE;}elseif ((2))hi=mid - 1;else1w = mid + 1;}*ptr = p;p = (3);}return FALSE;}[说明5-2]在M阶B树中插入一个关键字时,首先在最接近外部结点的某个非叶子结点中增加一个关键字,若该结点中关键字的个数不超过M-1,则完成插入;否则,要进行结点的“分裂”处理。所谓“分裂”,就是把结点中处于中间位置上的关键字取出来并插入其父结点中,然后以该关键字为分界线,把原结点分成两个结点。“分裂”过程可能会一直持续到树根,若树根结点也需要分裂,则整棵树的高度增加1。例如,在上图所示的B树中插入关键字25时,需将其插入结点e中。由于e中已经有3个关键字,因此将关键字24插入结点e的父结点b,并以24为分界线将结点e分裂为e1和e2两个结点,结果如下图所示。函数Isgrowing(BTreeNode*root,ElemKeyTypeakey)的功能是:判断在给定的M阶B树中插入关键字akey后,该B树的高度是否增加,若增加则返回TRUE,否则返回FALSE。其中,root是指向该M阶B树根结点的指针。在函数Isgrwing中,首先调用函数SearchBtree(即函数5-1)查找关键字akey是否在给定的M阶B树中,若在,则返回FALSE(表明无需插入关键字akey,树的高度不会增加);否则,通过判断结点中关键字的数目考查插入关键字akey后该B树的高度是否增加。[函数5-2]bool Isgrowing(BTreeNode* root, ElernKeyType akey){ BTreeNode *t, *f;if( !SearchBtree((4) )

阅读下列说明、图和C代码。

[说明5-1]

B树是一种多叉平衡查找树。一棵m阶的B树,或为空树,或为满足下列特性的m叉树:

①树中每个结点最多有m棵子树;

②若根结点不是叶子结点,则它至少有两棵子树;

⑧除根之外的所有非叶子结点至少有[m/2]棵子树;

④所有的非叶子结点中包含下列数据信息:

(n,A0,K1,A1,K2,A2, …,Kn,An)其中:Ki(i=1,2,…,n)为关键字,且Ki<Ki+1(i=1,2,…,n-1);Ai(i=0,1,…,n)为指向子树根结点的指针,且指针Ai-1,所指子树中所有结点的关键字均小于Ki,Ai+1,所指子树中所有结点的关键字均大于Ki,n为结点中关键字的数目。

⑤所有的叶子结点都出现在同一层次上,并且不带信息(可以看作是外部结点或查找失败的结点,实际上这些结点不存在,指向这些结点的指针为空)。

例如,一棵4阶B树如下图所示(结点中关键字的数目省略)。

B树的阶M、bool类型、关键字类型及B树结点的定义如下:

define M 4 /*B树的阶*/

typedef enum {FALSE=0,TRUE=1}bool;

typedef int ElemKeyType;

typedef struct BTreeNode {

int numkeys; /*结点中关键字的数日*/

struct BTreeNode*parent; /*指向父结点的指针,树根的父结点指针为空*/

struct BTreeNode *A[M]; /*指向子树结点的指针数组*/

ElemKeyType K[M]; /*存储关键字的数组,K[0]闲置不用*/

}BTreeNode;

函数SearchBtree(BTreeNode*root,ElemKcyTypeakey,BTreeNode:*pb)的功能是:在给定的一棵M阶B树中查找关键字akey所在结点,若找到则返回TRUE,否则返回 FALSE。其中,root是指向该M阶B树根结点的指针,参数ptr返回akey所在结点的指针,若akey不在该B树中,则ptr返回查找失败时空指针所在结点的指针。例如,在上图所示的4阶B树中查找关键字25时,ptr返回指向结点e的指针。

注;在结点中查找关键字akey时采用二分法。

[函数5-1]

bool SearchBtree(BTreeNode* root, ElemKeyType akey, BTreeNode **ptr)

{

int lw, hi, mid;

BTreeNode*p = root;

*ptr = NULL;

while ( p ) {

1w = 1; hi=(1);

while (1w <= hi) {

mid = (1w + hi)/2;

if (p -> K[mid] == akey) {

*ptr = p;

return TRUE;

}

else

if ((2))

hi=mid - 1;

else

1w = mid + 1;

}

*ptr = p;

p = (3);

}

return FALSE;

}

[说明5-2]

在M阶B树中插入一个关键字时,首先在最接近外部结点的某个非叶子结点中增加一个关键字,若该结点中关键字的个数不超过M-1,则完成插入;否则,要进行结点的“分裂”处理。所谓“分裂”,就是把结点中处于中间位置上的关键字取出来并插入其父结点中,然后以该关键字为分界线,把原结点分成两个结点。“分裂”过程可能会一直持续到树根,若树根结点也需要分裂,则整棵树的高度增加1。

例如,在上图所示的B树中插入关键字25时,需将其插入结点e中。由于e中已经有3个关键字,因此将关键字24插入结点e的父结点b,并以24为分界线将结点e分裂为e1和e2两个结点,结果如下图所示。

函数Isgrowing(BTreeNode*root,ElemKeyTypeakey)的功能是:判断在给定的M阶B树中插入关键字akey后,该B树的高度是否增加,若增加则返回TRUE,否则返回FALSE。其中,root是指向该M阶B树根结点的指针。

在函数Isgrwing中,首先调用函数SearchBtree(即函数5-1)查找关键字akey是否在给定的M阶B树中,若在,则返回FALSE(表明无需插入关键字akey,树的高度不会增加);否则,通过判断结点中关键字的数目考查插入关键字akey后该B树的高度是否增加。

[函数5-2]

bool Isgrowing(BTreeNode* root, ElernKeyType akey)

{ BTreeNode *t, *f;

if( !SearchBtree((4) )


相关考题:

●二叉排序树或者是一棵空树,或者是具有如下性质的二叉树:若其左子树非空,则左子树上所有结点的值均小于根结点的值;若其右子树非空,则右子树上所有结点的值均大于根结点的值;其左、右子树本身就是两棵二叉排序树。根据该定义,对一棵非空的二叉排序树进行 (42)遍历,可得到一个结点元素的递增序列(42)A. 先序(根、左、右)B. 中序(左、根、右)C. 后序(左、右、根)D. 层序(从树根开始,按层次)

在下列情况中,可称为二叉树的是()。A、每个结点至多有两棵子树的树B、哈夫曼树C、每个结点至多有两棵子树的有序树D、每个结点只有一棵右子树

m阶B树的根结点若不是叶结点,那么它至多有m棵子树,至少有( ) 棵子树。

m阶B树的根结点若不是叶结点,它至多有m棵子树,至少有【 】棵子树。

二叉排序树或者是一棵空树,或者是具有如下性质的二叉树:若其左子树非空,则左子树上所有结点的值均小于根结点的值;若其右子树非空,则右子树上所有结点的值均大于根结点的值;其左、右子树本身就是两棵二叉排序树。根据该定义,对一棵非空的二叉排序树进行(42)遍历,可得到一个结点元素的递增序列。A.先序(根、左、右)B.中序(左、根、右)C.后序(左、右、根)D.层序(从树根开始,按层次)

下面关于m阶B-树说法正确的是()。①每个结点至少有两棵非空子树;②树中每个结点至多有m-l个关键字;③所有叶子在同一层上;④当插入一个数据项引起B树结点分裂后,树长高一层。A.①②③B.②③C.②③④D.③

二叉排序树或者是一棵空树,或者是具有下列性质的一棵二叉树:(1)若左子数不空,则左子树所有结点的值();(2)若右子数不空,则右子树所有结点的值(); (3)左右子树又分别是()。

二叉排序树或者是一棵空树;或者是具有如下特性的二叉树:(1)若它的左子树不空,则左子树上所有结点的值均小于根结点的值;(2)若它的右子树不空,则右子树上所有结点的值均大于根结点的值。()

1、下面关于m阶B树说法正确的是A.每个结点至少有两棵非空子树B.树中每个结点至多有m-1个关键字C.所有叶子在同一层上;D.当插入一个数据元素引起B树结点分裂后,树长高一层

下列描述中,一定是二叉树的是()。A.每个结点最多有两棵子树的树B.哈夫曼树C.每个结点有两颗子树的有序树D.每个结点只有一棵子树的树