若A为m×n矩阵,B为n×m矩阵,则( ).A.当m>n时ABX=0必有非零解B.当m>n时AB必可逆C.当n>m时ABX=0只有零解D.当n>m时必有r(AB)<m

若A为m×n矩阵,B为n×m矩阵,则( ).

A.当m>n时ABX=0必有非零解
B.当m>n时AB必可逆
C.当n>m时ABX=0只有零解
D.当n>m时必有r(AB)<m

参考解析

解析:r(AB)≤r(A)≤n<m,AB是m阶方阵,由于系数矩阵的秩小于未知数的个数,故ABX=0有非零解.

相关考题:

设A是m×n实矩阵,若r(ATA)=5,则r(A)=_________.

两个矩阵Am*n和Bn*p相乘,用基本的方法进行,则需要的乘法次数为m*n*p 多个矩阵相乘满足结合律,不同的乘法顺序所需要的乘法次数不同。考虑采用动态规划方法确定Mi,M{i+i),…,Mj多个矩阵连乘的最优顺序,即所需要的乘法次数最少。最少乘法次数用m[i,j]表示,其递归式定义为:其中i、j和k为矩阵下标,矩阵序列中Mi的维度为(Pi-i.)*Pi采用自底向上的方法:实现该算法来确定n个矩阵相乘的顺序,其时间复杂度为( 64 )。若四个矩阵M1. M2、M3.,M4相乘的维度序列为2、6、3、10.3,采用上述算法求解,则乘法次数为( 65 )。A.O(N2)B.O(N2Lgn)C.O(N3)D.O(n3lgn)

若A是m×n矩阵,且m≠n,则当R(A)=n时,齐次线性方程组AX=0只有零解

若A是m×n矩阵,且m≠n,则当A的列向量组线性无关时,A的行向量组也线性无关

若A是m×n矩阵,且m≠n,则当R(A)=m时,非齐次线性方程组AX=b,有解

若A是m×n矩阵,且m≠n,则当R(A)=n时,非齐次线性方程组AX=b,有唯一解

设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().A.r>mB.r=mC.rD.r≥m

设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则

设A是m×n矩阵,B是n×m矩阵,且AB=E,其中E为m阶单位矩阵,则( )A.r(A)=r(B)=mB.r(A)=m r(B)=nC.r(A)=n r(B)=mD.r(A)=r(B)=n

设A为m×n矩阵,B为s×n矩阵.证明:.

设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,

设A为m阶正定矩阵,B为m×n阶实矩阵.证明:B^SAB正定的充分必要条件是r(B)=n,

设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.

设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则 A.A秩r(A)=m,秩r(B)=mB.秩r(A)=m,秩r(B)=nC.秩r(A)=n,秩r(B)=mD.秩r(A)=n,秩r(B)=n

若M、N均为n阶矩阵,则必有( )。A、|M+N|=|M|+|N|B、|MN|=|NM|C、(MN)′=M′N′D、(M+N)2=M2+2MN+N2

设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则( ).《》( )A.r(A)=m,r(B)=mB.r(A)=m,r(B)=nC.r(A)=n,r(B)=mD.r(A)=n,r(B)=n

设A、B分别为n×m,n×l矩阵,C为以A、B为子块的n×(m+l)矩阵,即C=(A,B),则( ).《》( )A.秩(C)=秩(A)B.秩(C)=秩(B)C.秩(C)与秩(A)或秩(C)与秩(B)不一定相等D.若秩(A)=秩(B)=r,则秩(C)=r

()产生希尔伯特矩阵的逆矩阵。A、rand(m,n)B、hilb(n)C、invhilb(n)D、randn(m,n)

对于m个发点、n个收点的运输问题,叙述错误的是()A、该问题的系数矩阵有m×n列B、该问题的系数矩阵有m+n行C、该问题的系数矩阵的秩必为m+n-1D、该问题的最优解必唯一

单选题设A为m×n矩阵,B为n×m矩阵,E为m阶单位矩阵,若AB=E,则(  )。Ar(A)=m,r(B)=mBr(A)=m,r(B)=nCr(A)=n,r(B)=mDr(A)=n,r(B)=n

单选题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=(  )。A0B1C2D3

单选题设A是m×n矩阵,B是n×m矩阵,则(  )。A当m>n时,必有|AB|≠0B当m>n时,必有|AB|=0C当n>m时,必有|AB|≠0D当n>m时,必有|AB|=0

填空题设A为n阶方阵,若对任意n×m(m≥n)矩阵B都有AB=0,则A=____.

单选题设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )。Ar>r1Br<rlCr=rlDr与r1的关系依C而定

单选题若A为m×n矩阵,B为n×m矩阵,则(  )。A当m>n时,ABX(→)=0(→)必有非零解B当m>n时,AB必可逆C当n>m时,ABX(→)=0(→)只有零解D当n>m时,必有r(AB)<m

单选题若A为m×n矩阵,B为n×m矩阵,则(  ).A当mn时ABX=0必有非零解B当mn时AB必可逆C当nm时ABX=0只有零解D当nm时必有r(AB)m

问答题设A为m×n矩阵(n<m),且AX=b有唯一解,证明:矩阵ATA为可逆矩阵,且方程组AX(→)=b(→)的解为X(→)=(ATA)-1ATb(→)(AT为A的转置矩阵)。