可对角化的矩阵是____。 A.实对称阵B.有n个相异特征值的n阶阵C.有n个线性无关的特征向量的n阶方阵
若A为n阶阵,E为n阶单位阵,下列命题正确的有____。 A.R(A)+R(A-E)不小于nB.R(A)+R(A+E)不小于nC.R(A)不大于n
n阶对称矩阵A为正定矩阵的充分必要条件是()。 A、∣A∣0B、存在n阶矩阵P,使得A=PTPC、负惯性指数为0D、各阶顺序主子式均为正数
设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是( ). A.二次型xTAx的负惯性指数零B.存在n阶矩阵C,使得A=CTCC.A没有负特征值D.A与单位矩阵合同
设A,B为,N阶实对称矩阵,则A与B合同的充分必要条件是().A.r(A)=r(B)B.|A|=|B|C.A~BD.A,B与同一个实对称矩阵合同
设A,B为n阶对称矩阵,下列结论不正确的是().A.AB为对称矩阵B.设A,B可逆,则A^-1+B^-1为对称矩阵C.A+B为对称矩阵D.kA为对称矩阵
设n阶矩阵A与对角矩阵相似,则().A.A的n个特征值都是单值B.A是可逆矩阵C.A存在n个线性无关的特征向量D.A一定为n阶实对称矩阵
设N阶矩阵A与对角矩阵合同,则A是().A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵
设A为n阶实对称矩阵,下列结论不正确的是().A.矩阵A与单位矩阵E合同B.矩阵A的特征值都是实数C.存在可逆矩阵P,使P^-1AP为对角阵D.存在正交阵Q,使Q^TAQ为对角阵
设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA
设A为n阶对称矩阵,k为常数.试证kA仍为对称矩阵.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,
证明;对任意的n阶矩阵A,为对称矩阵,而为反对称矩阵.
设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.
设3阶对称阵A的特征值为;对应的特征向量依次为 ,求A
下列不属于节点导纳矩阵特点的是()。A、n×n维方程B、对称阵C、高度稀疏矩阵D、上三角矩阵
设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。
n阶实对称矩阵A为正定矩阵,则下列不成立的是()。A、所有k级子式为正(k=1,2,…,n)B、A的所有特征值非负C、秩(A)=n
设A,B是n阶对称阵,Λ是对角阵,下列矩阵中不是对称阵的是().A、A+2EB、A+ΛC、ABD、A-B
设A是n阶方阵(不一定是对称阵).二次型f(x)=xTAx相对应的对称阵是().A、AB、ATC、1/2(A+AT)D、A+AT
问答题设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。
填空题设A为4阶方阵,且r(A)=3,A*为A的伴随矩阵,则r(A*)=____。
单选题设A是n阶方阵(不一定是对称阵).二次型f(x)=xTAx相对应的对称阵是().AABATC1/2(A+AT)DA+AT
单选题设A,B是n阶对称阵,Λ是对角阵,下列矩阵中不是对称阵的是().AA+2EBA+ΛCABDA-B