问答题设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。
问答题
设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。
参考解析
解析:
暂无解析
相关考题:
设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。
下列结论中正确的是( )。A、 矩阵A的行秩与列秩可以不等B、 秩为r的矩阵中,所有r阶子式均不为零C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D、 秩为r的矩阵中,不存在等于零的r-1阶子式
设A是m×n矩阵,秩(A)=r<min(m,n),则A中必( )A.至少有-r阶子式不为零,没有不等于0的r+1阶子式B.有等于0的r阶子式,所有r+l阶子式全为0C.有等于0的r阶子式,没有不等于0的r+1阶子式D.有等于0的r-1阶子式,有不等于0的r阶子式
单选题下列结论中正确的是( )A矩阵A的行秩与列秩可以不等B秩为r的矩阵中,所有r阶子式均不为零C若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零D秩为r的矩阵中,不存在等于零的r-1阶子式