设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.
设A,B都是n阶对称阵,证明AB是对称阵的充要条件是AB=BA.
参考解析
解析:
相关考题:
设A,B均为n阶非零方阵,下列选项正确的是() A. (A+B)(A-B) = A^2-B^2B. (AB)^-1 = B^-1A^-1C. 若AB= O, 则A=O或B=OD. |AB| = |A| |B|
设A,B是正定实对称矩阵,则().A. AB,A+B一定都是正定实对称矩阵B. AB是正定实对称矩阵,A+B不是正定实对称矩阵C. A+B是正定实对称矩阵,AB不一定是正定实对称矩阵D. AB必不是正定实对称矩阵,A+B必是正定实对称矩阵
设A,B是n阶方阵,下列命题正确的是().A、若A,B都是可逆阵,则A+B也是可逆阵B、若A+B是可逆阵,则A、B中至少有一个是可逆阵C、若AB不是可逆阵,则A、B也都不是可逆阵D、若ATA=E,则
单选题设A,B是n阶方阵,下列命题正确的是().A若A,B都是可逆阵,则A+B也是可逆阵B若A+B是可逆阵,则A、B中至少有一个是可逆阵C若AB不是可逆阵,则A、B也都不是可逆阵D若ATA=E,则
单选题设A、B都是4阶方阵且AB=0,则r(A)+r(B)( )。A≤1B≤2C≤3D≤4