线性方程组Ax=b有唯一解的充分必要条件式矩阵A的零空间只有0向量.
线性方程组Ax=b有唯一解的充分必要条件式矩阵A的零空间只有0向量.
参考答案和解析
D解析:
相关考题:
没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。 A.A的秩等于nB.A的秩不等于0C.A的行列式值不等于0D.A存在逆矩阵
设A为m*n矩阵,则有()。 A、若mn,则有ax=b无穷多解B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;C、若A有n阶子式不为零,则Ax=b有唯一解;D、若A有n阶子式不为零,则Ax=0仅有零解。
设A为n阶方阵,r(A)n,下列关于齐次线性方程组Ax=0的叙述正确的是() A、Ax=0只有零解B、Ax=0的基础解系含r(A)个解向量C、Ax=0的基础解系含n-r(A)个解向量D、Ax=0没有解
设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关
设A是n*n常数矩阵(n>1),X是由未知数X1、X2、…、Xn组成的列向量,B是由常数b1、b2、…、bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是______。A.A的秩等于nB.A的秩不等于0C.A的行列式值不等于0D.A存在逆矩阵A.B.C.D.
设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A.若Ax=0仅有零解,则Ax=b有惟一解B.若Ax=0有非零解,则Ax=b有无穷多个解C.若Ax=b有无穷多个解,则Ax=0仅有零解D.若Ax=b有无穷多个解,则Ax=0有非零解
设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。A、矩阵A的任意两个列向量线性相关B、矩阵A的任意两个列向量线性无关C、矩阵A的任一列向量是其余列向量的线性组合D、矩阵A必有一个列向量是其余列向量的线性组合
单选题设A是m×n阶矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )。A若Ax=0仅有零解,则Ax=b有唯一解B若Ax=0有非零解,则Ax=b有无穷多个解C若Ax=b有无穷多个解,则Ax=0仅有零解D若Ax=b有无穷多个解,则Ax=0有非零解
单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。[2017年真题]A矩阵A的任意两个列向量线性相关B矩阵A的任意两个列向量线性无关C矩阵A的任一列向量是其余列向量的线性组合D矩阵A必有一个列向量是其余列向量的线性组合
单选题没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。AA的秩等于nBA的秩不等于0CA的行列式值不等于0DA存在逆矩阵
单选题n元线性方程组AX(→)=b(→)有唯一解的充要条件为( )。AA为方阵且|A|≠0B导出组AX(→)=0(→)仅有零解C秩(A)=nD系数矩阵A的列向量组线性无关,且常数向量b(→)与A的列向量组线性相关
单选题n阶矩阵A的伴随矩阵为A*,齐次线性方程组AX(→)=0(→)有两个线性无关的解,则( )。AA*X(→)=0(→)的解均是AX(→)=0(→)的解BAX(→)=0(→)的解均是A*X(→)=0(→)的解CAX(→)=0(→)与A*X(→)=0(→)无非零公共解DAX(→)=0(→)与A*X(→)=0(→)仅有2个非零公共解