求向量组的秩和一个极大无关组,并将其余向量表成该极大无关组的线性组合
求向量组的秩和一个极大无关组,并将其余向量表成该极大无关组的线性组合
参考解析
解析:
相关考题:
设A为m×n阶矩阵,则齐次线性方程组AX=0只有零解的充分必要条件是(64)。A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关A.A的列向量组线性无关B.A的列向量组线性相关C.A的行向量组线性无关D.A的行向量组线性相关
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。A、矩阵A的任意两个列向量线性相关B、矩阵A的任意两个列向量线性无关C、矩阵A的任一列向量是其余列向量的线性组合D、矩阵A必有一个列向量是其余列向量的线性组合
设A为4X5矩阵,且A的行向量组线性无关,则( ).《》( )A.A的列向量组线性无关B.方程组AX=b有无穷多解C.方程组AX=b的增广矩阵的任意四个列向量构成的向量组线性无关D.A的任意4个列向量构成的向量组线性无关
单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。[2017年真题]A矩阵A的任意两个列向量线性相关B矩阵A的任意两个列向量线性无关C矩阵A的任一列向量是其余列向量的线性组合D矩阵A必有一个列向量是其余列向量的线性组合
单选题设A为4×5矩阵,且A的行向量组线性无关,则( )。AA的列向量组线性无关B方程组AX(→)=b(→)有无穷多解C方程组AX(→)=b(→)的增广矩阵A(_)的任意四个列向量构成的向量组线性无关DA的任意4个列向量构成的向量组线性无关
单选题A是n阶方阵,其秩r<n,则在A的n个行向量中( ).A必有r个行向量线性无关B任意r个行向量线性无关C任意r个行向量都构成极大线性无关向量组D任意一个行向量都可由其他任意r个行向量线性表出
单选题已知向量组α1=(3,2,-5)T,α2=(3,-1,3)T,α3=(1,-1/3,1)T,α4=(6,-2,6)T,则该向量组的一个极大线性无关组是( )。[2013年真题]Aα2,α4Bα3,α4Cα1,α2Dα2,α3
问答题设向量组α(→)1,α(→)2,…,α(→)s的秩为r>0,证明: (1)α(→)1,α(→)2,…,α(→)s中任意r个线性无关的向量都构成它的一个极大线性无关组; (2)若α(→)1,α(→)2,…,α(→)s中每个向量都可由其中某r个向量线性表示,则这r个向量必为α(→)1,α(→)2,…,α(→)s的一个极大线性无关组。
单选题已知向量组(α(→)1,α(→)3),(α(→)1,α(→)3,α(→)4),(α(→)2,α(→)3)都线性无关,而(α(→)1,α(→)2,α(→)3,α(→)4)线性相关,则向量组(α(→)1,α(→)2,α(→)3,α(→)4)的极大无关组是( )。A(α(→)1,α(→)2,α(→)3)B(α(→)1,α(→)2,α(→)4)C(α(→)1,α(→)3,α(→)4)D(α(→)2,α(→)3,α(→)4)
单选题设向量组α1,α2,…,αr(Ⅰ)是向量组α1,α2,…,αs(Ⅱ)的部分线性无关组,则( ).A(Ⅰ)是(Ⅱ)的极大线性无关组Br(Ⅰ)=r(Ⅱ)C当(Ⅰ)中的向量均可由(Ⅱ)线性表示时,r(Ⅰ)=r(Ⅱ)D当(Ⅱ)中的向量均可由(Ⅰ)线性表示时,r(Ⅰ)=r(Ⅱ)