单选题设z=f(x2+y2),其中f具有二阶导数,则等于().A2f’(x2+y2)B4x2f(x2+y2)C2’(x2+y2)+4x2f(x2+y2)D2xf(x2+y2)

单选题
设z=f(x2+y2),其中f具有二阶导数,则等于().
A

2f’(x2+y2)

B

4x2f(x2+y2)

C

2’(x2+y2)+4x2f(x2+y2)

D

2xf(x2+y2)


参考解析

解析: 暂无解析

相关考题:

设f(x)具有二阶导数,y=f(x2),则的值是( )。A.f"(4)B.16f"(4)C.2f'(4)+16f"(4)D.2f'(4)+4f"(4)

设y=ln(sinx),则二阶导数y″等于(  )。

设z=f(u,v)具有一阶连续偏导数,其中u=xy,v=x2+y2,A.xfu'+yfv' B. xfu'+2yfv'C.yfu'+2xfv' D.2xfu'+2yfv'

设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。f(x)的带拉格朗日余项的一阶麦克劳林公式为(  )。

设 , 其中f具有二阶连续偏导数, 求

设 ,其中 具有二阶连续偏导数 具有二阶连续导数,求

设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是 A.Af(0)>1,f"(0)>0B.f(0)>1,f"(0)C.f(0)0D.f(0)

设函数f(μ,ν)具有二阶连续偏导数,z=f(x,xy),则=________.

设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:  (Ⅰ)存在ξ∈(0,1),使得f'(ξ)=1;  (Ⅱ)存在η∈(-1,1),使得f"(η)+f'(η)=1.

设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求

设函数f(u)具有二阶连续导数,z=f(e^xcosy)满足    若f(0)=0,f'(0)=0,求f(u)的表达式.

设函数f(x)在(一∞,+∞)内连续,其中二阶导数f”(x)的图形如图所示,则曲线y(x)的拐点的个数为( )个。 A、0B、1C、2D、3

设函数f(χ)在(-∞,+∞)内连续,其中二阶导数f”(χ)的图形如图所示,则曲线y=f(χ)的拐点的个数为( )。 A、0B、1C、2 D、3

设函数f(χ)在(-∞,+∞)内连续,其中二阶导数f”(χ)的图形如图所示,则曲线y=f(χ)的拐点的个数为( )。 A、0B、1C、2D、3

设f(x)具有二阶导数,y=f(x2),则的值为()。

设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。

设z=f(x2+y2),其中f具有二阶导数,则等于().A、2f’(x2+y2)B、4x2f"(x2+y2)C、2’(x2+y2)+4x2f"(x2+y2)D、2xf"(x2+y2)

填空题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=____。

单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。Af″(x)+f(x)=0Bf′(x)+f(x)=0Cf″(x)+f′(x)=0Df″(x)+f′(x)+f(x)=0

单选题设u=f(x+y,xz)有二阶连续偏导数,则∂2u/∂x∂z=(  )。Af2′+xf11′+(x+z)f12″+xzf22″Bxf12″+xzf22″Cf2′+xf12″+xzf22″Dxzf22″

填空题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为____。

判断题设偶函数f(x)在区间(-1,1)内具有二阶导数,且f″(0)=f′(0)+1,则f(0)为f(x)的一个极小值。A对B错

单选题设z=yφ(x/y),其中φ(u)具有二阶连续导数,则∂2z/(∂x∂y)等于(  )。[2017年真题]A(1/y)φ″(x/y)B(-x/y2)φ″(x/y)C1Dφ′(x/y)-(x/y)φ″(x/y)

单选题设f有二阶偏导数,z=f(xy),则∂2z/∂x∂y等于(  )。Ayf″+f′Bxy2f″Cxyf′f″Df′+xyf″

问答题设z=f(x2-y2,exy),其中f具有连续二阶偏导数,求∂z/∂x,∂z/∂y。

单选题设z=f(x,xy)二阶偏导数连续,则∂2z/∂x∂y=(  )。Af2′+f12″+xyf22″Bf2′+f12″+xf22″Cf2′+xyf12″+xyf22″Df2′+xf12″+xyf22″

单选题设函数y=f(x)具有二阶导数,且f′(x)=f(π/2-x),则该函数满足的微分方程为(  )。Af′(x)+f(x)=0Bf′(x)-f(x)=0Cf″(x)+f(x)=0Df″(x)-f(x)=0