单选题例如,“菱形→等边四边形→平行四边形→四边形”这是一个()过程。A弱抽象B浅层抽象C深层抽象D强抽象

单选题
例如,“菱形→等边四边形→平行四边形→四边形”这是一个()过程。
A

弱抽象

B

浅层抽象

C

深层抽象

D

强抽象


参考解析

解析: 暂无解析

相关考题:

一般平行四边形有关内容的掌握影响菱形的学习,属于自上而下的垂直迁移。 ( )

在E-R图中,用来表示属性的图形是( )。A)矩形B)椭圆形C)菱形D)平行四边形

“平行四边形”这个概念的内涵包括()。 A、邻边不等的斜平行四边形、矩形、菱形、正方形的集合B、两组对边分别平行C、对角线互相平分D、两组对边分别相等

从一般平行四边形有关内容的掌握影响菱形的学习,属于自上而下的垂直迁移。( )

如果一个四边形是中心对称图形,那么这个四边形一定是平行四边形吗?为什么?

下列各组概念属于属种关系的是( )。A.菱形和平行四边形B.锐角三角形和钝角三角形C.平行四边形和梯形D.菱形和长方形

儿童在学习了“平行四边形”这个概念后,再学习“矩形”“菱形”和“正方形”这 些特殊的平行四边形,这属于( )。A.下位学习B.上位学习C.组合学习D.派生类属学习

初中数学《平行四边形的性质》一、考题回顾二、考题解析【教学过程】(一)引入新课我们一起来观察下图中的竹篱笆格子和汽车的防护链,由此得到:平行四边形性质1:平行四边形的对边相等.平行四边形性质2:平行四边形的对角相等.(三)课堂练习【答辩题目解析】1.说说本节课教材的地位与作用。2.谈一谈本节课的教法。

初中数学《菱形的判定》一、考题回顾二、考题解析【教学过程】(一)引入新课提问:菱形和矩形分别比平行四边形多了哪些性质?怎么判断一个四边形是矩形?问题:如何判断一个平行四边形或四边形是菱形?引出课题。(二)探索新知问题:对比平行四边形和矩形的判定方法,说说菱形的性质定理的逆定理是否成立?思考:对角线互相垂直的平行四边形是菱形吗?1.请说一说平行四边形、矩形、菱形、正方形的概念。2.说一下菱形这节课在整个初中数学的地位?

初中数学《平行四边形的判定》一、考题回顾二、考题解析【教学过程】(一)引入新课提出问题:平行四边形的定义是什么?平行四边形有什么性质?我们可以说怎么样的一个图形是平行四边形呢?除定义之外还有没有其它的方法来判定一个四边形是平行四边形呢?由此引出今天学习的内容是《平行四边形的判定》。(二)探索新知通过前面的学习,我们知道,平行四边形的对边相等,对角相等,对角线互相平分。那么反过来,对边相等或对角线互相平分的四边形是不是平行四边形呢?下面我们就来验证一下。实验一:取两长两短的四根木条用小钉铰在一起,做成一个四边形,如果等长的木条成为对边,那么无论如何转动这个四边形,它的形状都是平行四边形;实验二:取两根长短不一的细木条,将它们的中点重叠,并用小钉钉在一起,用橡皮筋连接木条的顶点,做成一个四边形。转动两根木条,这个四边形是平行四边形。引导学生归纳得出结论:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。提问学生:你能根据平行四边形的定义证明它们吗?引导学生以“对角线互相平分的四边形是平行四边形”为例,通过三角形全等进行证明。明确平行四边形的判定定理与相应的性质定理互为逆定理。提问学生:求证四边形ABCD是平行四边形,说一说有哪些证明方法?预设:可以利用定义,或证明两组对边分别相等,或两组对角分别相等。继续提问:思考两组对边分别平行或相等的四边形是平行四边形,如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?学生活动:组织学生前后桌四人一组进行讨论,教师巡视指导。引导学生猜想一组对边平行且相等的四边形是平行四边形,并进行证明。通过充分讨论和分享,结合学生的回答,教师明确:平行四边形判定的另一种方法,即一组对边平行且相等的四边形是平行四边形。提问学生:现在你有多少种判定一个四边形是平行四边形的方法?引导学生回顾平行四边形判定的四种方法。(三)课堂练习基础题:练习题1,引导学生利用平行四边形判定的四种方法进行证明。提升题:练习题2,解决生活实际问题。(四)小结作业提问:今天有什么收获?引导学生回顾:本节课学习了平行四边形判定的四种方法。课后梯度作业:必做题和选做题。【板书设计】1.平行四边形的判定定理都有哪些?2.为什么要学习平行四边形的判定?

如图7,在四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,则应添加的条件是__________(添加一个条件即可)。

《义务教育教学课程标准(2011年版)》关于平行四边形的性质的教学要求是:探索并证明平行四边形的性质定理——平行四边形的对边以及对角相等,请基于该要求,完成下列教学设计任务:(1)设计平行四边形性质的教学目标;(6分)(2)设计两种让学生发现平行四边形性质的教学流程;(12分)(3)设计平行四边形性质证明的教学流程,使学生领悟证明过程中的教学思想方法。(12分)

下列说法中,不正确的是(  )。A.两组对边分别相等的四边形是平行四边形B.平行四边形的对角线互相平分C.平行四边形的对边相等D.对角线相等的四边形是平行四边形

若一个四边形,既是轴对称图形,又是中心对称图形,那么该图形一定是()A、菱形B、平行四边形C、等腰梯形

下列关于特殊四边形的表述中,正确的有()A、一组对边平行且相等的四边形是平行四边形B、四条边都相等的四边形是矩形C、对角线互相垂直的四边形是菱形D、正方形既是矩形又是菱形

磁性开关的图形符号中有一个()A、长方形B、平行四边形C、菱形D、正方形

例如,“菱形→等边四边形→平行四边形→四边形”这是一个()过程。A、弱抽象B、浅层抽象C、深层抽象D、强抽象

箍筋做成了菱形或平行四边形,根源在哪里?

八字翼墙的顶面是()。A、矩形;B、平行四边形;C、梯形;D、菱形

面积相等的长方形和平行四边形,,它们的周长()。A、长方形大于平行四边形B、平行四边形大于长方形C、相等D、无法比较

单选题面积相等的长方形和平行四边形,,它们的周长()。A长方形大于平行四边形B平行四边形大于长方形C相等D无法比较

多选题下列关于特殊四边形的表述中,正确的有()A一组对边平行且相等的四边形是平行四边形B四条边都相等的四边形是矩形C对角线互相垂直的四边形是菱形D正方形既是矩形又是菱形

单选题若一个四边形,既是轴对称图形,又是中心对称图形,那么该图形一定是()A菱形B平行四边形C等腰梯形

单选题公文标题字数较多需回行时,标题排列应当使用()A梯形或长方形B菱形或平行四边形C梯形或菱形D长方形或平行四边形

单选题例如,“菱形→等边四边形→平行四边形→四边形”这是一个()过程。A弱抽象B浅层抽象C深层抽象D强抽象

问答题箍筋做成了菱形或平行四边形,根源在哪里?

单选题一个三角形和一个平行四边形,面积相等,底也相等,那么三角形和平行四边形的高相比较().A三角形的高是平行四边形的一半B相等C三角形的高是平行四边形的2倍

单选题(2014陕西咸阳)学生已知“平行四边形”这一概念的意义,教师再通过“菱形是四边一样长的平行四边形”这一命题界定菱形,使学生在掌握平行四边形概念基础上学习菱形这一概念,这种学习属于()。A派生类属学习B总括学习C相关类属学习D组合学习