初中数学《一元二次方程根与系数的关系》一、考题回顾
初中数学《一元二次方程根与系数的关系》
一、考题回顾
一、考题回顾
参考解析
解析:二、考题解析
【教学过程】
(一)引入新课
复习回顾一元二次方程的一般形式以及求根公式。
提出问题:一元二次方程的根与方程中的系数之间有怎样的关系呢?
引出课题。
(四)小结作业
提问:今天有什么收获?引导学生回顾:一元二次方程根与系数的关系以及推导证明过程。
作业:课后练习。
【板书设计】
【答辩题目解析】
1.教学目标是什么?
【参考答案】
(1)知识与技能
学生知道一元二次方程根与系数的关系,并会应用根与系数关系解决问题。
(2)过程与方法
学生能够借助问题的引导,发现、归纳并证明一元二次方程根与系数的关系,在探究过程中,感受由特殊到一般地认识事物的规律。
(3)情感态度价值观
通过探索一元二次方程的根与系数的关系,激发发现规律的积极性,鼓励勇于探索的精神。
【教学过程】
(一)引入新课
复习回顾一元二次方程的一般形式以及求根公式。
提出问题:一元二次方程的根与方程中的系数之间有怎样的关系呢?
引出课题。
(四)小结作业
提问:今天有什么收获?引导学生回顾:一元二次方程根与系数的关系以及推导证明过程。
作业:课后练习。
【板书设计】
【答辩题目解析】
1.教学目标是什么?
【参考答案】
(1)知识与技能
学生知道一元二次方程根与系数的关系,并会应用根与系数关系解决问题。
(2)过程与方法
学生能够借助问题的引导,发现、归纳并证明一元二次方程根与系数的关系,在探究过程中,感受由特殊到一般地认识事物的规律。
(3)情感态度价值观
通过探索一元二次方程的根与系数的关系,激发发现规律的积极性,鼓励勇于探索的精神。
相关考题:
由12对观测值(xi,yi),i=1,2,…,12,求得Lxx=238,Lyy=106,Lxy=-153,则下列叙述正确的有( )。A.x与y的相关系数为0.963B.x与y的相关系数为-0.963C.y对x的一元线性回归系数为-1.443D.y对x的一元线性回归系数为-0.643E.x对y的一元线性回归系数为-0.643
初中数学《一元二次方程》一、考题回顾二、考题解析【教学过程】(一)引入新课复习旧知:回顾之前学习过哪些方程,并对一元一次方程的定义进行回顾。总结:明确本节课学习初中阶段的最后一种方程,《一元二次方程》。【板书设计】【答辩题目解析】1.谈一谈你本节课导入的设计意图是什么?2.一元二次方程、二次函数、一元二次不等式之间的联系是什么?
针对“一元二次方程”起始课的教学,两位老师给出了如下教学片断:【教师甲】设置问题:请同学们根据下列问题,只列出含未知数的方程:预设:学生会分别列出两个方程。教师要求学生分别整理成方程左侧降幂排序,右侧为零的形式,然后引导学生完成下面两件事:对比“一元一次方程”的定义,为这类方程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次方程,并提炼出一元二次方程的一般表达式。【教师乙】 上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。请完成下列任务:(1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。(15分)(2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道练习题,加深学生对“一元二次方程”概念的理解。(15分)
针对一元二次方程概念与解法的一节复习课,教学目标如下:①进一步了解一元二次方程的概念;②进一步了解-元二次方程的多种解法(配方法、公因式法、因式分解法等);③会运用判别式判断一元二次方程根的情况;④通过相关问题的讨论,在理解相关知识的同时,休会数学思想方法,积累数学活动经验。 问题:根据上述教学目标,完成下列任务:(1)为了落实上述教学目标①、②,请设计一个教学片段,并说明设计意图;(2)配方法是解一元二次方程的通性解法,请设计问题串,以帮助学生进一步理解配方法在解一元二次方程中的作用。
针对“一元二次方程”起始课的教学,两位老师给出了如下教学片断:【教师甲】设置问题:请同学们根据下列问题,只列出含未知数的方程:(1)一个正方形的面积为2,求正方形的边长x。预设:学生会分别列出两个方程。教师要求学生分别整理成方程左侧降幂排序,右侧为零的形式,然后引导学生完成下面两件事:对比“一元一次方程”的定义,为这类方程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次方程,并提炼出一元二次方程的一般表达式。【教师乙】 上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。请完成下列任务:(1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。(15分)(2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道练习题,加深学生对“一元二次方程”概念的理解。(15分)
针对一元二次方程概念与解法的一节复习课,教学目标如下:① 进一步了解一元二次方程的概念;② 进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等);③ 会运用判别式判断一元二次方程根的情况;④ 通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。问题:根据上述教学目标,完成下列任务:(1)为了落实上述教学目标①②,请设计一个教学片段,并说明设计意图;(18分)(2)配方法是解一元二次方程的通性通法,请设计问题串,以帮助学生进一步理解配方法在解一元二次方程中的作用。(12分)
针对“一元二次议程”起始课的教学,两位老师给出了如下教学设计片段:【教师甲】设置问题:请同学们根据下列问题,只列出含未知数x的方程:(1)一个正方形的面积为2,求正方形的边长x。(2)长度为1的线段AB有一点C,且满足AC/AB=BC/AC,求线段AC的长x。预设:学生会分别列出两个方程。教师要求学生分别整理成方程左侧降幂排列,右侧为零的形式,然后引导学生完成下面两件事:对比”一元一次方程“的定义,为这类议程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次议程,并提炼出一元二次方程的一般表达式。【教师乙】上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。请完成下列任务:(1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。(2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道习题,以加深学生对“一元二次方程”概念的理解。
A. x与y的相关系数为0. 963B. x与y的相关系数为-0.963C. y对x的一元线性回归系数为-1.443D. y对x的一元线性回归系数为-0.643E. x对y的一元线性回归系数为-0.643
单选题若一元二次方程的系数是整数,则解为()。A整数B正数C分数D不一定