初中数学《一元二次方程》一、考题回顾二、考题解析【教学过程】(一)引入新课复习旧知:回顾之前学习过哪些方程,并对一元一次方程的定义进行回顾。总结:明确本节课学习初中阶段的最后一种方程,《一元二次方程》。【板书设计】【答辩题目解析】1.谈一谈你本节课导入的设计意图是什么?2.一元二次方程、二次函数、一元二次不等式之间的联系是什么?
初中数学《一元二次方程》
一、考题回顾
二、考题解析
【教学过程】
(一)引入新课
复习旧知:回顾之前学习过哪些方程,并对一元一次方程的定义进行回顾。
总结:明确本节课学习初中阶段的最后一种方程,《一元二次方程》。
【板书设计】
【答辩题目解析】
1.谈一谈你本节课导入的设计意图是什么?
2.一元二次方程、二次函数、一元二次不等式之间的联系是什么?
一、考题回顾
二、考题解析
【教学过程】
(一)引入新课
复习旧知:回顾之前学习过哪些方程,并对一元一次方程的定义进行回顾。
总结:明确本节课学习初中阶段的最后一种方程,《一元二次方程》。
【板书设计】
【答辩题目解析】
1.谈一谈你本节课导入的设计意图是什么?
2.一元二次方程、二次函数、一元二次不等式之间的联系是什么?
参考解析
解析:1、我采用复习旧知的导入方法。我会让学生回顾之前学习过哪些方程,并对一元一次方程的定义进行回顾。在学生充分回忆以后,明确本节课学习初中阶段的最后一种方程,《一元二次方程》。
这样的设计既可以考察学生对之前知识的掌握情况,还能够为今天学习一元二次方程的概念打下基础。
2、三者之间联系非常的紧密:一元二次方程的根为二次函数与x轴交点的横坐标;一元二次不等式的解集其中大于0的部分为二次函数在x轴上方函数图象的定义域,小于0部分为二次函数在x轴下方函数图象的定义域。
这样的设计既可以考察学生对之前知识的掌握情况,还能够为今天学习一元二次方程的概念打下基础。
2、三者之间联系非常的紧密:一元二次方程的根为二次函数与x轴交点的横坐标;一元二次不等式的解集其中大于0的部分为二次函数在x轴上方函数图象的定义域,小于0部分为二次函数在x轴下方函数图象的定义域。
相关考题:
针对“一元二次方程”起始课的教学,两位老师给出了如下教学片断:【教师甲】设置问题:请同学们根据下列问题,只列出含未知数的方程:预设:学生会分别列出两个方程。教师要求学生分别整理成方程左侧降幂排序,右侧为零的形式,然后引导学生完成下面两件事:对比“一元一次方程”的定义,为这类方程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次方程,并提炼出一元二次方程的一般表达式。【教师乙】 上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。请完成下列任务:(1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。(15分)(2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道练习题,加深学生对“一元二次方程”概念的理解。(15分)
针对一元二次方程概念与解法的一节复习课,教学目标如下:①进一步了解一元二次方程的概念;②进一步了解-元二次方程的多种解法(配方法、公因式法、因式分解法等);③会运用判别式判断一元二次方程根的情况;④通过相关问题的讨论,在理解相关知识的同时,休会数学思想方法,积累数学活动经验。 问题:根据上述教学目标,完成下列任务:(1)为了落实上述教学目标①、②,请设计一个教学片段,并说明设计意图;(2)配方法是解一元二次方程的通性解法,请设计问题串,以帮助学生进一步理解配方法在解一元二次方程中的作用。
针对“一元二次方程”起始课的教学,两位老师给出了如下教学片断:【教师甲】设置问题:请同学们根据下列问题,只列出含未知数的方程:(1)一个正方形的面积为2,求正方形的边长x。预设:学生会分别列出两个方程。教师要求学生分别整理成方程左侧降幂排序,右侧为零的形式,然后引导学生完成下面两件事:对比“一元一次方程”的定义,为这类方程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次方程,并提炼出一元二次方程的一般表达式。【教师乙】 上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。请完成下列任务:(1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。(15分)(2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道练习题,加深学生对“一元二次方程”概念的理解。(15分)
针对一元二次方程概念与解法的一节复习课,教学目标如下:① 进一步了解一元二次方程的概念;② 进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等);③ 会运用判别式判断一元二次方程根的情况;④ 通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。问题:根据上述教学目标,完成下列任务:(1)为了落实上述教学目标①②,请设计一个教学片段,并说明设计意图;(18分)(2)配方法是解一元二次方程的通性通法,请设计问题串,以帮助学生进一步理解配方法在解一元二次方程中的作用。(12分)
针对“一元二次议程”起始课的教学,两位老师给出了如下教学设计片段:【教师甲】设置问题:请同学们根据下列问题,只列出含未知数x的方程:(1)一个正方形的面积为2,求正方形的边长x。(2)长度为1的线段AB有一点C,且满足AC/AB=BC/AC,求线段AC的长x。预设:学生会分别列出两个方程。教师要求学生分别整理成方程左侧降幂排列,右侧为零的形式,然后引导学生完成下面两件事:对比”一元一次方程“的定义,为这类议程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次议程,并提炼出一元二次方程的一般表达式。【教师乙】上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。请完成下列任务:(1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。(2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道习题,以加深学生对“一元二次方程”概念的理解。
东汉时期的( )一书总结了周秦至汉代的数学成就,其中包括有关面积、体积、负数运算、一元二次方程解法,这标志着以计算为中心的中国古代数学体系的形成。A、《论衡》B、《九章算术》C、《人物志》D、《说文解字》
下列哪个选项是迁移()。A、学生刚学习一篇文章,教师带领学生用真实情景演示出来B、学生学习解决一元二次方程,老师测验一元二次方程C、学生学习古诗文后,老师让学生默写D、学生学习一位数加法,作业是两位数加法
单选题下列哪个选项是迁移()。A学生刚学习一篇文章,教师带领学生用真实情景演示出来B学生学习解决一元二次方程,老师测验一元二次方程C学生学习古诗文后,老师让学生默写D学生学习一位数加法,作业是两位数加法
单选题东汉时期的( )一书总结了周秦至汉代的数学成就,其中包括有关面积、体积、负数运算、一元二次方程解法,这标志着以计算为中心的中国古代数学体系的形成。A《论衡》B《九章算术》C《人物志》D《说文解字》
单选题若一元二次方程的系数是整数,则解为()。A整数B正数C分数D不一定