单选题若一元二次方程的系数是整数,则解为()。A整数B正数C分数D不一定
单选题
若一元二次方程的系数是整数,则解为()。
A
整数
B
正数
C
分数
D
不一定
参考解析
解析:
暂无解析
相关考题:
●若码值FFFFH是一个整数的原码表示,则该整数的真值为 (7) ;若码值FFFFH是一个整数的补码表示,则该整数的真值为 (8) 。(7) A.32767B.-32768C.-32767D.-1(8) A.32767B.-32768C.-32767D.-1
运算器在执行两个用补码表示的整数加法时,下面判断是否溢出的规则中______是正确的。A.两个整数相加,若最高位(符号位)有进位,则一定发生溢出B.两个整数相加,若结果的符号位为0,则一定发生溢出C.两个整数相加,若结果的符号位为1,则一定发生溢出D.两个同号的整数相加,若结果的符号位与加数的符号位相反,则一定发生溢出
若码值EB是一个整数的原码,则该整数的真值是(8);若码值EB是一个整数的反码,则该整数的真值是(9);若码值EB是一个整数的补码,则该整数的真值是(10)。A.235B.-235C.107D.-107
若码值FFH是一个整数的原码表示,则该整数的真值为(4);若码值FFH是一个整数的补码表示,则该整数的真值为(5);若码值FFH是一个整数的反码表示,则该整数的真值为(6)。A.127B.0C.-127D.-1
下面判断是否溢出的规则中哪个是正确的?______。A.两个整数相加,若最高位(符号位)有进位,则一定发生溢出B.两个整数相加,若结果的符号位为0,则一定发生溢出C.两个整数相加,若结果的符号位为1,则一定发生溢出D.两个同号的整数相加,若结果的符号位与加数的符号位相反,则一定发生溢出
若机器码采用16 bit表示,则采用补码时所能表示的最小整数为(7);采用原码时所能表示的最小整数为(8)。对于十六位的机器码1110001010000000,若它表示一个整数的原码,则这个数的真值为(9);若它表示一个整数的反码,则这个数的十六进制真值为(10);若它表示一个小数的补码时,则这个数的真值为(11)。A.-32768B.-32767C.-65536D.-65535
针对“一元二次方程”起始课的教学,两位老师给出了如下教学片断:【教师甲】设置问题:请同学们根据下列问题,只列出含未知数的方程:预设:学生会分别列出两个方程。教师要求学生分别整理成方程左侧降幂排序,右侧为零的形式,然后引导学生完成下面两件事:对比“一元一次方程”的定义,为这类方程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次方程,并提炼出一元二次方程的一般表达式。【教师乙】 上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。请完成下列任务:(1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。(15分)(2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道练习题,加深学生对“一元二次方程”概念的理解。(15分)
针对一元二次方程概念与解法的一节复习课,教学目标如下:①进一步了解一元二次方程的概念;②进一步了解-元二次方程的多种解法(配方法、公因式法、因式分解法等);③会运用判别式判断一元二次方程根的情况;④通过相关问题的讨论,在理解相关知识的同时,休会数学思想方法,积累数学活动经验。 问题:根据上述教学目标,完成下列任务:(1)为了落实上述教学目标①、②,请设计一个教学片段,并说明设计意图;(2)配方法是解一元二次方程的通性解法,请设计问题串,以帮助学生进一步理解配方法在解一元二次方程中的作用。
针对“一元二次方程”起始课的教学,两位老师给出了如下教学片断:【教师甲】设置问题:请同学们根据下列问题,只列出含未知数的方程:(1)一个正方形的面积为2,求正方形的边长x。预设:学生会分别列出两个方程。教师要求学生分别整理成方程左侧降幂排序,右侧为零的形式,然后引导学生完成下面两件事:对比“一元一次方程”的定义,为这类方程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次方程,并提炼出一元二次方程的一般表达式。【教师乙】 上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。请完成下列任务:(1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。(15分)(2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道练习题,加深学生对“一元二次方程”概念的理解。(15分)
针对一元二次方程概念与解法的一节复习课,教学目标如下:① 进一步了解一元二次方程的概念;② 进一步理解一元二次方程的多种解法(配方法、公式法、因式分解法等);③ 会运用判别式判断一元二次方程根的情况;④ 通过对相关问题的讨论,在理解相关知识的同时,体会数学思想方法,积累数学活动经验。问题:根据上述教学目标,完成下列任务:(1)为了落实上述教学目标①②,请设计一个教学片段,并说明设计意图;(18分)(2)配方法是解一元二次方程的通性通法,请设计问题串,以帮助学生进一步理解配方法在解一元二次方程中的作用。(12分)
针对“一元二次议程”起始课的教学,两位老师给出了如下教学设计片段:【教师甲】设置问题:请同学们根据下列问题,只列出含未知数x的方程:(1)一个正方形的面积为2,求正方形的边长x。(2)长度为1的线段AB有一点C,且满足AC/AB=BC/AC,求线段AC的长x。预设:学生会分别列出两个方程。教师要求学生分别整理成方程左侧降幂排列,右侧为零的形式,然后引导学生完成下面两件事:对比”一元一次方程“的定义,为这类议程定义一个名称——一元二次方程。再请学生自行写出几个不同的一元二次议程,并提炼出一元二次方程的一般表达式。【教师乙】上课开始。提问:什么是“一元一次方程”?请你根据“一元一次方程”的定义,给出“一元二次方程”的定义,并举出几个“一元二次方程”的例子。在学生举例的基础上,提炼出“一元二次方程”的一般表达式。请完成下列任务:(1)请分析两位老师引入“一元二次方程”概念设计方案的各自的特点。(2)在教学中,当引入一个新的数学概念之后,往往通过例题、习题加深对概念的理解。请针对“一元二次方程”概念,设计不同难度的两道例题和两道习题,以加深学生对“一元二次方程”概念的理解。
单选题(2014内蒙古赤峰)下面属于迁移的是()。A学生学习解一元二次方程后,老师测验一元二次方程B学生学习古诗文后,老师让学生默写C学生学习欧姆定理后,老师让学生解一道需要运用欧姆定理解答的题目D学生学习一位数加法,作业是两位数加法