模型中引入实际上与解释变量有关的变量,会导致参数的OLS估计量方差( )。A.增大B.减小C.有偏D.非有效

模型中引入实际上与解释变量有关的变量,会导致参数的OLS估计量方差( )。

A.增大
B.减小
C.有偏
D.非有效

参考解析

解析:

相关考题:

模型中引入实际上与解释变量有关的变量,会导致参数的OLS估计量方差()。A.增大B.减小C.有偏D.非有效

模型中引入一个无关的解释变量()A.对模型参数估计量的性质不产生任何影响B.导致普通最小二乘估计量有偏C.导致普通最小二乘估计量精度下降D.导致普通最小二乘估计量有偏,同时精度下降

当模型存在异方差性时,对参数估计量的影响包括( )。A.参数估计量非有效B.变量的显著性检验失去意义C.模型的预测失效D.参数估计量的方差被低估E.参数估计量的方差被高估

回归模型中具有异方差性时,仍用OLS估计模型,则以下说法正确的是( )A.参数估计值是无偏非有效的B.参数估计量仍具有最小方差性C.常用F检验失效D.参数估计量是有偏的

若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是( )。Ⅰ.回归参数估计量非有效Ⅱ.变量的显著性检验失效Ⅲ.模型的预测功能失效Ⅳ.解释变量之间不独立 A、Ⅰ.Ⅱ.Ⅲ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅱ.Ⅲ.ⅣD、Ⅰ.Ⅱ.Ⅳ

下列关于逐步回归法说法错误的是( )。 A、逐步回归法先对单个解释变量进行回归,再逐步增加变量个数B、有可能会剔除掉重要的解释变量从而导致模型产生设定偏误C、如果新引入变量未能明显改进拟合优度值,则说明新引入的变量与其他变量之间存在共线性D、如果新引入变量后t检验显著,则说明新引入的变量与其他变量之间存在共线性

在用普通最小二乘法估计回归模型时,存在异方差问题将导致( )。Ⅰ.参数估计量非有效Ⅱ.变量的显著性检验无意义Ⅲ.模型的预测失效Ⅳ.参数估计量有偏 A、Ⅰ.Ⅱ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅰ.Ⅲ.ⅣD、Ⅱ.Ⅲ.Ⅳ

若多元线性回归模型存在自相关问题,可能产生的不利影响是( )。Ⅰ.模型参数估计量失去有效性Ⅱ.参数的OLS估计量的方差变大Ⅲ.参数估计一量的经济含义不合理Ⅳ.运用回归模型进行预测会失效 A、Ⅰ.Ⅱ.Ⅲ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅰ.Ⅲ.ⅣD、Ⅰ.Ⅱ.Ⅳ

若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是( )A: 回归参数估计量非有效B: 变量的显著性检验失效C: 模型的预测功能失效D: 解释变量之叫不独立

下列选项中说法正确的有()。A、当异方差出现时,最小二乘估计是有偏的和不具有最小方差特性B、当异方差出现时,常用的t和F检验失效C、异方差情况下,通常的OLS估计一定高估了估计量的标准差D、如果OLS回归的残差表现出系统性,则说明数据中不存在异方差性E、如果回归模型中遗漏一个重要变量,则OLS残差必定表现出明显的趋势

异方差性的后果包括()。A、参数估计量不再满足无偏性B、变量的显著性检验失去意义C、模型的预测失效D、普通最小二乘法参数估计量方差较大

当模型存在异方差性时,对参数估计量的影响包括()。A、参数估计量非有效B、变量的显著性检验失去意义C、模型的预测失效D、参数估计量的方差被低估E、参数估计量的方差被高估

序列相关性的后果包括()。A、参数估计量不再满足无偏性B、变量的显著性检验失去意义C、模型的预测失效D、普通最小二乘法参数估计量方差较大

模型中引入实际上与解释变量有关的变量,会导致参数的OLS估计量方差()。A、增大B、减小C、有偏D、非有效

在引入虚拟变量后,OLS估计量的性质受到了影响。

假定某需求函数Yt=β0+β1Xt+ut,且需求量与季节有关,季节分为春、夏、秋、冬四季,引入4个虚拟变量得到虚拟变量模型,则模型参数估计量为()A、有效估计量B、有偏估计量C、非一致估计量D、无法估计

在引入虚拟变量后,OLS估计量只有在大样本的时候才是无偏的。

如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量()A、不确定,方差无限大B、确定,方差无限大C、不确定,方差最小D、确定,方差最小

随机解释变量x产生的后果主要取决于它与随机误差项u是否相关,以及相关的性质,以下说法正确的是()。A、如果x与u相互独立,则参数的OLS估计量是无偏一致估计量B、如果x与u相互独立,则参数的OLS估计量是有偏非一致估计量C、如果x与u同期不相关,异期相关,则参数的OLS估计量在小样本下是有偏的,在大样本下具有一致性D、如果x与u同期相关,则参数的OLS估计量在小样本下是有偏的、非一致的;在大样本下是无偏的、一致的E、如果x与u同期相关,则无论是小样本还是大样本,参数的OLS估计量均是有偏且非一致的

模型中引入一个无关的解释变量()A、对模型参数估计量的性质不产生任何影响B、导致普通最小二乘估计量有偏C、导致普通最小二乘估计量精度下降D、导致普通最小二乘估计量有偏,同时精度下降

关于自回归模型,下列表述正确的有()。A、估计自回归模型时的主要问题在于,滞后被解释变量的存在可能导致它与随机误差项相关,以及随机误差项出现自相关性B、Koyck模型和自适应预期模型都存在解释变量与随机误差项同期相关问题C、局部调整模型中解释变量与随机误差项没有同期相关,因此可以应用OLS估计D、Koyck模型与自适应预期模型不满足古典假定,如果用OLS直接进行估计,则估计量是有偏的、非一致估计E、无限期分布滞后模型可以通过一定的方法可以转换为一阶自回归模型

回归模型中具有异方差性时,仍用OLS估计模型,则以下说法正确的是()A、 参数估计值是无偏非有效的B、 参数估计量仍具有最小方差性C、 常用F检验失效D、 参数估计量是有偏的

单选题假定某需求函数Yt=β0+β1Xt+ut,且需求量与季节有关,季节分为春、夏、秋、冬四季,引入4个虚拟变量得到虚拟变量模型,则模型参数估计量为()A有效估计量B有偏估计量C非一致估计量D无法估计

单选题在用普通最小二乘法估计回归模型时,存在异方差问题将导致()。 Ⅰ 参数估计量非有效 Ⅱ 变量的显著性检验无意义 Ⅲ 模型的预测失效 Ⅳ 参数估计量有偏AI、Ⅱ、ⅢBI、Ⅱ、ⅣCI、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ

单选题在用普通最小二乘法估计回归模型时,存在异方差问题将导致(  )。Ⅰ.参数估计量非有效Ⅱ.变量的显著性检验无意义Ⅲ.模型的预测失效Ⅳ.参数估计量有偏AⅠ、Ⅱ、ⅢBⅠ、Ⅱ、ⅣCⅠ、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ

单选题若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是(  )。Ⅰ.回归参数估计量非有效Ⅱ.变量的显著性检验失效Ⅲ.模型的预测功能失效Ⅳ.解释变量之间不独立AⅠ、Ⅱ、ⅢBⅠ、Ⅱ、ⅣCⅠ、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ

多选题关于联立方程模型,下列说法不正确的有()A联立方程偏倚实质是内生变量与前定变量的高度相关;B只有当模型中所有方程均可识别时,模型才可识别;C结构式方程中解释变量必须是外生变量或滞后内生变量;D简化式模型中简化式参数反映了解释变量对被解释变量的间接影响;E满足经典假定时,简化式参数的最小二乘估计量具有无偏、一致性。

单选题若多元线性回归模型存在自相关问题,可能产生的不利影响是()I 模型参数估计量失去有效性 Ⅱ参数的OLS估计量的方差变大 Ⅲ参数估计量的经济含义不合理 IV 运用回归模型进行预测会失效AI、II、III、IVBI、II、IIICI、III、IVDI、II、IV