异方差性的后果包括()。A、参数估计量不再满足无偏性B、变量的显著性检验失去意义C、模型的预测失效D、普通最小二乘法参数估计量方差较大
异方差性的后果包括()。
- A、参数估计量不再满足无偏性
- B、变量的显著性检验失去意义
- C、模型的预测失效
- D、普通最小二乘法参数估计量方差较大
相关考题:
异方差性将导致( )。A.普通最小二乘法估计量有偏和非一致B.普通最小二乘法估计量非有效C.普通最小二乘法估计量的方差的估计量有偏D.建立在普通最小二乘法估计基础上的假设检验失效E.建立在普通最小二乘法估计基础上的预测区间变宽
对具有多重共线性的模型采用普通最小二乘法进行估计参数,会产生的不良后果有( )。A.完全共线性下参数估计量不存在B.参数估计量不具有有效性C.近似共线性下普通最小二乘法参数估计量的方差变大D.参数估计量经济含义不合理E.变量的显著性检验和模型的预测功能失去意义
若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是( )。Ⅰ.回归参数估计量非有效Ⅱ.变量的显著性检验失效Ⅲ.模型的预测功能失效Ⅳ.解释变量之间不独立 A、Ⅰ.Ⅱ.Ⅲ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅱ.Ⅲ.ⅣD、Ⅰ.Ⅱ.Ⅳ
在用普通最小二乘法估计回归模型时,存在异方差问题将导致( )。Ⅰ.参数估计量非有效Ⅱ.变量的显著性检验无意义Ⅲ.模型的预测失效Ⅳ.参数估计量有偏 A、Ⅰ.Ⅱ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅰ.Ⅲ.ⅣD、Ⅱ.Ⅲ.Ⅳ
若多元线性回归模型存在自相关问题,可能产生的不利影响是( )。Ⅰ.模型参数估计量失去有效性Ⅱ.参数的OLS估计量的方差变大Ⅲ.参数估计一量的经济含义不合理Ⅳ.运用回归模型进行预测会失效 A、Ⅰ.Ⅱ.Ⅲ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅰ.Ⅲ.ⅣD、Ⅰ.Ⅱ.Ⅳ
异方差性的影响主要有()。A、普通最小二乘估计量是有偏的B、普通最小二乘估计量是无偏的C、普通最小二乘估计量不再具有最小方差性D、建立在普通最小二乘估计基础上的假设检验失效E、建立在普通最小二乘估计基础上的预测区间变宽
自相关情况下将导致()A、参数估计量不再是最小方差线性无偏估计量B、均方差MSE可能严重低估误差项的方差C、常用的F检验和t检验失效D、参数估计量是无偏的E、利用回归模型进行预测的结果会存在较大的误差
下列关于异方差性、自相关性和多重共线性的说法,正确的有()。A、当存在异方差性、自相关性和多重共线性时,都会导致参数显著性检验失去意义B、当存在异方差性、自相关性和多重共线性时,利用普通最小二乘法的估计量都存在C、当存在异方差性、自相关性和多重共线性时,仍然可以进行模型预测D、当存在异方差性、自相关性和多重共线性时,如果参数估计量存在,那么都具有有效性E、当存在异方差性、自相关性和多重共线性时,都可以通过一定的方法进行补救
对具有多重共线性的模型采用普通最小二乘法估计参数,会产生的不良后果有()。A、完全共线性下参数估计量不存在B、参数估计量不具有有效性C、近似共线性下普通最小二乘法参数估计量的方差变大D、参数估计量的经济意义不合理E、变量的显著性检验和模型的预测功能失去意义
单选题在用普通最小二乘法估计回归模型时,存在异方差问题将导致()。 Ⅰ 参数估计量非有效 Ⅱ 变量的显著性检验无意义 Ⅲ 模型的预测失效 Ⅳ 参数估计量有偏AI、Ⅱ、ⅢBI、Ⅱ、ⅣCI、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ
多选题自相关情况下将导致()A参数估计量不再是最小方差线性无偏估计量B均方差MSE可能严重低估误差项的方差C常用的F检验和t检验失效D参数估计量是无偏的E利用回归模型进行预测的结果会存在较大的误差
单选题在用普通最小二乘法估计回归模型时,存在异方差问题将导致( )。Ⅰ.参数估计量非有效Ⅱ.变量的显著性检验无意义Ⅲ.模型的预测失效Ⅳ.参数估计量有偏AⅠ、Ⅱ、ⅢBⅠ、Ⅱ、ⅣCⅠ、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ