如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量()A、不确定,方差无限大B、确定,方差无限大C、不确定,方差最小D、确定,方差最小
如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量()
- A、不确定,方差无限大
- B、确定,方差无限大
- C、不确定,方差最小
- D、确定,方差最小
相关考题:
下列说法正确的有( )。A.当异方差出现时,最小二乘估计是有偏的和不具有最小方差特性B.当异方差出现时,常用的t和F检验失效C.异方差情况下,通常的OLS估计一定高估了估计量的标准差D.如果OLS回归的残差表现出系统性,则说明数据中不存在异方差性E.如果回归模型中遗漏一个重要变量,则OLS残差必定表现出明显的趋势
如果模型中解释变量之间存在共线性,则会引起如下后果()A、 参数估计值确定B、 参数估计值不确定C、 参数估计值的方差趋于无限大D、 参数的经济意义不正确E、 DW统计量落在了不能判定的区域
下列选项中说法正确的有()。A、当异方差出现时,最小二乘估计是有偏的和不具有最小方差特性B、当异方差出现时,常用的t和F检验失效C、异方差情况下,通常的OLS估计一定高估了估计量的标准差D、如果OLS回归的残差表现出系统性,则说明数据中不存在异方差性E、如果回归模型中遗漏一个重要变量,则OLS残差必定表现出明显的趋势
异方差性的影响主要有()。A、普通最小二乘估计量是有偏的B、普通最小二乘估计量是无偏的C、普通最小二乘估计量不再具有最小方差性D、建立在普通最小二乘估计基础上的假设检验失效E、建立在普通最小二乘估计基础上的预测区间变宽
判断题如果回归模型中随机误差项之间存在序列相关,则普通最小二乘估计量不是无偏估计量,也不再具有最小方差的性质。A对B错