单选题在用普通最小二乘法估计回归模型时,存在异方差问题将导致(  )。Ⅰ.参数估计量非有效Ⅱ.变量的显著性检验无意义Ⅲ.模型的预测失效Ⅳ.参数估计量有偏AⅠ、Ⅱ、ⅢBⅠ、Ⅱ、ⅣCⅠ、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ

单选题
在用普通最小二乘法估计回归模型时,存在异方差问题将导致(  )。Ⅰ.参数估计量非有效Ⅱ.变量的显著性检验无意义Ⅲ.模型的预测失效Ⅳ.参数估计量有偏
A

Ⅰ、Ⅱ、Ⅲ

B

Ⅰ、Ⅱ、Ⅳ

C

Ⅰ、Ⅲ、Ⅳ

D

Ⅱ、Ⅲ、Ⅳ


参考解析

解析:
计量经济学模型一旦出现异方差性,如果仍采用普通最小二乘法估计模型参数,会产生下列不良后果:①参数估计量非有效,OLS估计量仍然具有无偏性,但不具有有效性;②变量的显著性检验失去意义;③模型的预测失效,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对被解释变量的预测误差变大,降低预测精度,预测功能失效。

相关考题:

异方差性将导致()。A.普通最小二乘法估计量有偏和非一致B.普通最小二乘法估计量非有效C.普通最小二乘法估计量的方差的估计量有偏D.建立在普通最小二乘法估计基础上的假设检验失效E.建立在普通最小二乘法估计基础上的预测区间变宽

若回归模型中的随机误差项存在异方差性,则估计模型参数应采用()。A.普通最小二乘法B.加权最小二乘法C.广义差分法D.工具变量法

对具有多重共线性的模型采用普通最小二乘法进行估计参数,会产生的不良后果有( )。A.完全共线性下参数估计量不存在B.参数估计量不具有有效性C.近似共线性下普通最小二乘法参数估计量的方差变大D.参数估计量经济含义不合理E.变量的显著性检验和模型的预测功能失去意义

当模型存在异方差性时,对参数估计量的影响包括( )。A.参数估计量非有效B.变量的显著性检验失去意义C.模型的预测失效D.参数估计量的方差被低估E.参数估计量的方差被高估

若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是( )。Ⅰ.回归参数估计量非有效Ⅱ.变量的显著性检验失效Ⅲ.模型的预测功能失效Ⅳ.解释变量之间不独立 A、Ⅰ.Ⅱ.Ⅲ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅱ.Ⅲ.ⅣD、Ⅰ.Ⅱ.Ⅳ

在用普通最小二乘法估计回归模型时,存在异方差问题将导致( )。Ⅰ.参数估计量非有效Ⅱ.变量的显著性检验无意义Ⅲ.模型的预测失效Ⅳ.参数估计量有偏 A、Ⅰ.Ⅱ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅰ.Ⅲ.ⅣD、Ⅱ.Ⅲ.Ⅳ

若多元线性回归模型存在自相关问题,可能产生的不利影响是( )。Ⅰ.模型参数估计量失去有效性Ⅱ.参数的OLS估计量的方差变大Ⅲ.参数估计一量的经济含义不合理Ⅳ.运用回归模型进行预测会失效 A、Ⅰ.Ⅱ.Ⅲ.ⅣB、Ⅰ.Ⅱ.ⅢC、Ⅰ.Ⅲ.ⅣD、Ⅰ.Ⅱ.Ⅳ

若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是(  )。 Ⅰ 回归参数估计量非有效 Ⅱ 变量的显著性检验失效 Ⅲ 模型的预测功能失效 Ⅳ 解释变量之间不独立A.I、Ⅱ、ⅢB.I、Ⅱ、IIC.I、Ⅲ、ⅣD.Ⅱ、Ⅲ、Ⅳ

若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是( )A: 回归参数估计量非有效B: 变量的显著性检验失效C: 模型的预测功能失效D: 解释变量之叫不独立

异方差性的后果包括()。A、参数估计量不再满足无偏性B、变量的显著性检验失去意义C、模型的预测失效D、普通最小二乘法参数估计量方差较大

当模型存在异方差性时,对参数估计量的影响包括()。A、参数估计量非有效B、变量的显著性检验失去意义C、模型的预测失效D、参数估计量的方差被低估E、参数估计量的方差被高估

如果回归模型中的随机误差项存在异方差,则模型参数的普通最小二乘估计量()。A、无偏且有效B、无偏但非有效C、有偏但有效D、有偏且非有效

序列相关性的后果包括()。A、参数估计量不再满足无偏性B、变量的显著性检验失去意义C、模型的预测失效D、普通最小二乘法参数估计量方差较大

异方差情况下将导致()A、参数估计量是无偏的,但不是最小方差无偏估计B、参数显著性检验失效C、模型预测失效D、参数估计量是有偏的,且方差不是最小的E、模型预测有效

自相关情况下将导致()A、参数估计量不再是最小方差线性无偏估计量B、均方差MSE可能严重低估误差项的方差C、常用的F检验和t检验失效D、参数估计量是无偏的E、利用回归模型进行预测的结果会存在较大的误差

当一个线性回归模型的随机误差项存在序列相关时,直接用普通最小二乘法估计参数,则参数估计量为()A、有偏估计量B、有效估计量C、无效估计量D、渐近有效估计量

若回归模型中的随机误差项存在异方差性,则估计模型参数应采用()。A、普通最小二乘法B、加权最小二乘法C、广义差分法D、工具变量法

存在异方差时,普通最小二乘法通常会高估参数估计量的方差。

当模型存在异方差现象时,模型利用加权最小二乘法估计回归参数,则参数估计量具备()。A、线性B、无偏性C、有效性D、一致性E、精确性

存在异方差情况下,线性回归模型的结构参数的普通最小二乘估计量是有偏的和非有效的。

对具有多重共线性的模型采用普通最小二乘法估计参数,会产生的不良后果有()。A、完全共线性下参数估计量不存在B、参数估计量不具有有效性C、近似共线性下普通最小二乘法参数估计量的方差变大D、参数估计量的经济意义不合理E、变量的显著性检验和模型的预测功能失去意义

单选题在用普通最小二乘法估计回归模型时,存在异方差问题将导致()。 Ⅰ 参数估计量非有效 Ⅱ 变量的显著性检验无意义 Ⅲ 模型的预测失效 Ⅳ 参数估计量有偏AI、Ⅱ、ⅢBI、Ⅱ、ⅣCI、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ

单选题若多元线性回归模型存在自相关问题,这可能产生的不利影响包括(  )。Ⅰ.模型参数估计值非有效Ⅱ.参数估计量的方差变大Ⅲ.参数估计量的经济含义不合理Ⅳ.运用回归模型进行预测会失效AⅠ、Ⅱ、ⅢBⅠ、Ⅱ、ⅣCⅠ、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ

多选题异方差情况下将导致()A参数估计量是无偏的,但不是最小方差无偏估计B参数显著性检验失效C模型预测失效D参数估计量是有偏的,且方差不是最小的E模型预测有效

单选题若通过检验发现多元线性回归模型存在多重共线性,则应用模型会带来的后果是(  )。Ⅰ.回归参数估计量非有效Ⅱ.变量的显著性检验失效Ⅲ.模型的预测功能失效Ⅳ.解释变量之间不独立AⅠ、Ⅱ、ⅢBⅠ、Ⅱ、ⅣCⅠ、Ⅲ、ⅣDⅡ、Ⅲ、Ⅳ

单选题若回归模型中的随机误差项存在异方差性,则估计模型参数应采用()。A普通最小二乘法B加权最小二乘法C广义差分法D工具变量法

单选题当一个线性回归模型的随机误差项存在序列相关时,直接用普通最小二乘法估计参数,则参数估计量为()A有偏估计量B有效估计量C无效估计量D渐近有效估计量