有一批边长为1厘米的小正方体,其中一面涂红色的有400个,相邻两面涂红色的有30个,相邻三面涂红色的有1个,其余小正方体各面都没有涂颜色。用这一批小正方体组成一个大正方体,要求这个大正方体有三个面是红色,且这三个面两两相邻,其余的三个面没有颜色。假如没有涂颜色的小正方体数量足够多,那么这个正方体的边长最大是( )厘米。A.10B.11C.12D.13

有一批边长为1厘米的小正方体,其中一面涂红色的有400个,相邻两面涂红色的有30个,相邻三面涂红色的有1个,其余小正方体各面都没有涂颜色。用这一批小正方体组成一个大正方体,要求这个大正方体有三个面是红色,且这三个面两两相邻,其余的三个面没有颜色。假如没有涂颜色的小正方体数量足够多,那么这个正方体的边长最大是( )厘米。

A.10
B.11
C.12
D.13

参考解析

解析:第一步,本题考查几何问题,属于几何构造。
第二步,让三面都涂色的小正方体作为一个顶角,然后与其相相连的三个棱均放置相邻两个面涂色的小正方体,每条棱上各10个,此时需要需要单面涂色的小正方体10×10×3=300(个),可以满足,故边长最长为10+1=11(厘米)。

相关考题:

用棱长1cm的小正方体摆成稍大一些的正方体,至少需要多少个小正方体?动手摆摆看。

一个正方体的六个面,每个面的颜色各不相同,并且只能是红、黄、绿、蓝、黑、白这六种颜色。如果满足:①红色的对面是黑色,②蓝色和白色相邻,③黄色和蓝色相邻这三个条件,那么下面结论错误的是( )。A.红色与蓝色相邻B.蓝色的对面是绿色C.黄色与白色相邻D.黑色与绿色相邻

给一个正方体木块的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同。为什么?

将27个边长为1的小正方体垒成一个大正方体,然后把大正方体全部涂成红色,请问:三面都被涂成红色的小正方体有多少个?()。A.4B.6C.8D.12

现有边长1米的一个木质正方体,已知将其放人水里,将有0.6米浸入水中。如果将其分割成边长为0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为( )平方米。 A.3.4 B.9.6 C.13.6 D.16

有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6。将两个正方体放在桌面上,向上的一面数字之和为偶数的有多少种情形?( )A.9B.12C.18D.24

现有边长为1米的一个木质正方体,将其放入水里,有0.6米浸入水中。如果将其分割成边长0.25米的小正方体,并将所有的小正方体都放入水中,直接和水接触的表面积总量为( )。A.3.4平方米B.9.6平方米C.13.6平方米D.16平方米

有64个边长为l厘米的同样大小的小正方体, 其中34个为白色的,30个为黑色的。现将它们拼成一个4×4×4的大正方体, 在大正方体的表面上白色部分最多可以是多少平方厘米?( )A.52B.64C.72D.74

一块各面均涂有油漆的正方体被锯成1000个同样大小的小正方体,将这些小正方体均匀地搅混在一起,随机地取出一个小正方体,其两面涂有油漆的概率是:A.0.12 B.0.096C.0.072 D.0.064

一只蚂蚁从右图的正方体的A顶点沿正方体的表面爬到正方体的C顶点,设正方体边长为a,问该蚂蚁爬过的最短路程为:

一个木制正方体在表面涂上颜色,将它的每条棱三等分,然后从等分点将正方体展开,得到27个小正方体,将这些小正方体充分混合后,装入一个口袋,从这个口袋中随机取出两个小正方体,其中一个正方体只有一个面涂有颜色,另一个只有2个面涂有颜色的概率约为( )A. 0.05B. 0.17C. 0.34D. 0.67

1000个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后,再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个:A 490B 488C 484D 480

边长为6的正方体,由若干个边长为1的正方体组成,现将大正方体表面涂上色,请问仅有一面着色的小正方体与仅有两面着色的小正方体个数之差为多少?A.36B.48C.54D.64

一个正方体的六个面,每个面的颜色各不相同,并且只能是红、黄、绿、蓝、黑、白这六种颜色。如果满足:①红色的对面是黑色,②蓝色和白色相邻,③黄色和蓝色相邻这三个条件,那么下面结论错误的是( )。A红色与蓝色相邻B蓝色的对面是绿色C黄色与白色相邻D黑色与绿色相邻

将1000个边长为1cm的小正方体组合成一个实心的大正方体后,将该正方体的5个面涂满色后再全部分开,那么至少有一面涂色的小正方体有多少个?A.424B.488C.512D.576

有一批边长为1厘米的小正方体,其中一面涂红色的有400个,相邻两面涂红色的有30个,相邻三面涂红色的有1个,其余小正方体各面都没有涂颜色。用这一批小正方体组成一个大正方体,要求这个大正方体有三个面是红色,且这三个面两两相邻,其余的三个面没有颜色。假如没有涂颜色的小正方体数量足够多,那么这个正方体的边长最大是( )厘米。A.10B.11C.12D.13

将2个棱长为30厘米的正方体木块的六面分别全涂成黑色后,都锯成棱长为10厘米的小正方体,问从这些小正方体中随机抽取出多少个,才能保证一定能够在取出的小立方体中挑出8个,拼成外表面全为黑色的,棱长为20厘米的正方体?A. 27B. 36C. 40D. 46

一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是( )个。A.490B.488C.484D.480

连接正方体每个面的中心构成一个正八面体(如下图所示)。已知正方体的边长为6厘米,问正八面

将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中,一点红色也没有的小正方体有4块,那么原来的长方体的体积为( )立方厘米A.180B.54C.54或48D.64E.180或64

一个棱长为6厘米的正方体木块,表面涂上红色,然后把它锯成边长为1厘米的小正方体,设一面红色的有a块,两面红色的有b块,三面红色的有c块,没有红色的有d块,则a,b,c,d的最大公约数为( )A.2B.4C.6D.8E.12

如,正方体位于半径为3的球内,且其中一面位于球的大圆上,则正方体表面积最大为A.12B.18C.24D.30E.36

把若干个体积相等的正方体拼成一个大正方体,在表面涂上红色,已知一面涂色的小正方体有96个,则两面涂色的小正方体有( )个A.48B.60C.64D.24E.32

连接正方体每个面的中心构成一个正八面体(如下图所示)。已知正方体的边长为6厘 米,问正八面体的体积为多少立方厘米?( )

连接正方体每个面的中心构成一个正八面体(如下图所示)。已知正方体的边长为6厘米,问正八面体的体积为多少立方厘米?( )

边长为4的正方体木块,各面均涂成红色,将其锯成64个边长为1的小正方体,并将它们搅匀混在一起,随机抽取一个小正方体,恰有两面为红色的概率是( )

连接正方体每个面的中心构成一个正八面体。己知正方体的边长为6厘米,问正八面体的体积为多少立方厘米?()A、182B、242C、36D、72

单选题连接正方体每个面的中心构成一个正八面体。己知正方体的边长为6厘米,问正八面体的体积为多少立方厘米?()A182B242C36D72