将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中,一点红色也没有的小正方体有4块,那么原来的长方体的体积为( )立方厘米A.180B.54C.54或48D.64E.180或64
将一个表面漆有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中,一点红色也没有的小正方体有4块,那么原来的长方体的体积为( )立方厘米
A.180
B.54
C.54或48
D.64
E.180或64
B.54
C.54或48
D.64
E.180或64
参考解析
解析:没有红色的小正方体位于原来的长方体的内部,这4个小正方体可能排成一字形或田字形;若为一字形:棱长分别为1,1,4,故原长方体的长宽高为3,3,6,体积为3×3×6=54;若为田字形:棱长分别为2,2,1,故原长方体的长宽高为4,4,3,体积为4×4×3=48
相关考题:
如果把一个体积为125立厘米的正方体铁块切割成体积相等的8个小正方体,则每个小正方体铁块的表面积是( )。A.6.25平方厘米B.15.625平方厘米C.16.5平方厘米D.37.5平方厘米
把一个64cm×40cm×24cm的长方体切成若干个完全相同的小正方体,并使这些小正方体的表面积总和最小,则小正方体的表面积总和为( )。A.73280cm2B.54680cm2C.69450cm2D.46080cm2
把一个64Cmx40Cmx24Cm的长方体切成若干个完全相同的小正方体,并使这些小正方体的表面积总和最小,则小正方体的表面积总和为( )。A.73280cm2B.54680cm2C.69450cm2D.46080cm2
1000个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后,再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是多少个:A 490B 488C 484D 480
有一批边长为1厘米的小正方体,其中一面涂红色的有400个,相邻两面涂红色的有30个,相邻三面涂红色的有1个,其余小正方体各面都没有涂颜色。用这一批小正方体组成一个大正方体,要求这个大正方体有三个面是红色,且这三个面两两相邻,其余的三个面没有颜色。假如没有涂颜色的小正方体数量足够多,那么这个正方体的边长最大是( )厘米。A.10B.11C.12D.13
一个长方体木块恰能切割成五个正方体木块,五个正方体木块表面积之和比原来的长方体木块的表面积增加了200cm2。则长方体木块的体积为多少?A.625cm3B.125cm3C.500cm3D.750cm3
一千个体积为1立方厘米的小正方体合在一起成为一个边长为10厘米的大正方体,大正方体表面涂油漆后再分开为原来的小正方体,这些小正方体至少有一面被油漆涂过的数目是( )个。A.490B.488C.484D.480
小学数学《长方体和正方体的表面积》一、考题回顾题目来源:5月18日 上午 天津市 面试考题试讲题目1.题目:长方体和正方体的表面积2.内容:3.基本要求:(1)10分钟试讲;(2)引导学生理解长方体和正方体的表面积计算公式;(3)要有适当板书。答辩题目1.本节课的教学目标是什么?2.如何做好课堂提问?
将一个8厘米×8厘米×1厘米的白色长方体木块的外表面涂上黑色颜料,然后将其切成64个棱长1厘米的小正方体,再用这些小正方体堆成棱长4厘米的大正方体,且使黑色的面向外露的面积要尽量大,问大正方体的表面上有多少平方厘米是黑色的? A. 88B. 84C. 96D. 92
边长为4的正方体木块,各面均涂成红色,将其锯成64个边长为1的小正方体,并将它们搅匀混在一起,随机抽取一个小正方体,恰有两面为红色的概率是( )