设X1,…,X16是取自正态总体N(μ,σ2)的样本,其中μ与σ2均未知.要检验H0:σ=3,则当H0成立时,检验统计量().A、2服从χ2(15)B、服从χ2(15)C、服从χ2(15)D、2服从χ2(16)

设X1,…,X16是取自正态总体N(μ,σ2)的样本,其中μ与σ2均未知.要检验H0:σ=3,则当H0成立时,检验统计量().

  • A、2服从χ2(15)
  • B、服从χ2(15)
  • C、服从χ2(15)
  • D、2服从χ2(16)

相关考题:

设X1,X2,…,X16是来自总体X~N(4,б2)的简单随机样本,б2已知,令,则统计量服从的概率密度函数为()

设样本是来自正态总体N(μ,σ2),其中σ2未知,那么检验假设H0:μ=μ0时,用的是Z检验。( )A.正确B.错误

设X1,X2,…,Xn是来自正态总体N(μ,σ2)的一个样本,与s分别为其观测值的样本均值与样本标准差,则在下列抽样分布中正确表述的有( )。

设(X1,X2,…,Xn)是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知,则下列各项中,不是统计量的有( )。

设X1,X2,…,Xn是来自正态总体N(μ,σ2)的一个样本,则有( )。

设X1,…,Xn是取自正态总体N(μ,1)的样本,其中μ未知,μ的无偏估计是( ).A.B.C.D.X-X1

设(X1,X2,…,Xn)(N≥2)为标准正态总体X的简单随机样本,则().

设(X1,X2,…,Xn)是抽自正态总体N(u,σ2)的一个容量为10的样本,

设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,Xn是取自总体X的样本,则λ的最大似然估计是( ).A.B.C.SD.

设X1,…,Xn是取自正态总体N(μ,1)的样本,其中μ未知,下列μ的无偏估计中,最有效的是( ).A.B.C.D.X1

从正态总体X~N(0,σ^2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ^2的无偏估计量的是().

设总体X~N(μ,σ^2),X1,X2,…,Xn为总体X的简单随机样本,X与S^2分别为样本均值与样本方差,则().

设(X1,X2,…,X10)是抽自正态总体N()的一个容量为10的样本,其中-∞<μ<+∞,>0。记

设X1,X2,…,Xn是来自正态总体N(μ,σ2)的一个样本,,s2分别是样本均值和样本方差,令,则有( )。A、W~t(n)B、W~t(n-1)C、W~F(n)D、W~F(n-1)

设X1,…,Xn是取自总体X的容量为n的样本,总体均值E(X)=μ未知,μ的无偏估计是( ).A.B.C.X1+XnD.

设x1,x2,…,x9是从正态总体N(μ,0.62)中随机抽取的样本,样本均值为,μa是标准正态 分布的a分位数,则均值μ的0.90置信区间为( )。A. ±0.2u0.95 B.±0.2u0.90 C. ±0.6u0.90 D.±0.6u0.95

设X1,X2,…,X9是来自正态总体X的简单随机样本,…证明统计量Z服从自由度为2的t分布.

设样本是来自正态总体N(μ,σ2),其中σ2未知,那么检验假设H0:μ=μ0时,用的是Z检验。(  )

设样本x1,x2,…,xn来自正态总体N(0,9),其样本方差为s2,则E(s2)=()

设(X1,X2,…,X10)是抽自正态总体N(μ,σ2)的一个容量为10的样本,其中-∞μ+∞,σ20,记服从x2分布,其自由度为()。A、9B、8C、7D、10

设x1,…,X是取自总体X的容量为n的样本.已知总体X服从参数为p的二点分布,则等于().A、np(p)B、(n-1)p(p)C、npD、np2

设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,X是取自总体X的样本,则A的最大似然估计是().A、XB、S2C、SD、2

设X1,…,X81是取自正态总体N(μ,9)的样本,要检验H0:μ=0则当H0成立时,检验统计量().A、3B、3C、9服从t(81)D、3服从N(0,1)

单选题设X1,…,X81是取自正态总体N(μ,9)的样本,要检验H0:μ=0则当H0成立时,检验统计量().A3B3C9服从t(81)D3服从N(0,1)

判断题设样本是来自正态总体N(μ,σ2),其中σ2未知,那么检验假设H0:μ=μ0时,用的是Z检验。A对B错

单选题设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,X是取自总体X的样本,则A的最大似然估计是().AXBS2CSD2

单选题设X1,…,X16是取自正态总体N(μ,σ2)的样本,其中μ与σ2均未知.要检验H0:σ=3,则当H0成立时,检验统计量().A2服从χ2(15)B服从χ2(15)C服从χ2(15)D2服从χ2(16)