单选题数学期望本意即为随机变量分布的()A总体均值B总体方差C概率D均值

单选题
数学期望本意即为随机变量分布的()
A

总体均值

B

总体方差

C

概率

D

均值


参考解析

解析: 暂无解析

相关考题:

在简单线性回归分析中,关于误差项随机变量的理论假设包括( )。A、服从正态分布B、数学期望等于0C、相互独立D、方差相等

设随机变量x的分布函数为则数学期望E(X)等于(  )。

设X1,X2,…,Xn,…相互独立,则X1,X2,…,Xn,…满足辛钦大数定律的条件是( ) A.X1,X2,…,Xn,…同分布且有相同的数学期望与方差B.X1,X2,…,Xn,…同分布且有相同的数学期望C.X1,X2,…,Xn,…为同分布的离散型随机变量D.X1,X2,…,Xn,…为同分布的连续型随机变量

已知离散型随机变量X的概率分布为(1)求常数a;(2)求X的数学期望EX及方差DX.

设离散型随机变量X的概率分布为求X的数学期望EX及方差DX.

设离散型随机变量x的分布列为①求常数a的值;②求X的数学期望E(X).

设随机变量x的概率密度为F(x)为X的分布函数,EX为X的数学期望,则P{F(X)>EX-1}=________.

已知随机变量ξ的数学期望Eξ=23,其分布列如下表,则()A.a=0.4,b=0.3B.a=0.3,b=0.4C.a=0.2,b=0.5D.a=0.5,b=0.2

若随机变量X与Y相互独立,且X在区间[0,2]上服从均匀分布,Y服从参数为3的指数分布,则数学期望E(XY)等于:

可修复元件连续停运时间随机变量的数学期望也称为()。

将离散型随即变量的全部可能取值极其对应概率列举出来,即为离散型随机变量的()A、期望B、概率分布C、方差D、均值

数学期望本意即为随机变量分布的()A、总体均值B、总体方差C、概率D、均值

设随机变量X与Y相互独立,且X在区间[0,2]上服从均匀分布,Y服从参数为3的指数分布,则数学期望E(XY)等于()。A、1B、3

变异系数是指()。A、随机事件的各种变量与相应概率的加权平均值B、随机变量取值与数学期望离差的平方和的平方根C、随机变量标准差与数学期望的比值

期望值是指()。A、随机事件的各种变量与相应概率的加权平均值B、随机变量取值与数学期望离差的平方和的平方根C、随机变量标准差与数学期望的比值

简述随机变量数学期望和方差的性质。

一个二项分布随机变量的方差与数学期望之比为1/5,则该分布的参数p应为()A、1/5B、2/5C、3/5D、4/5

若随机变量X服从参数为n和p的二项分布,则它的数学期望为(),方差是()

方差刻画了随机变量的取值对于其数学期望的离散程度

对随机变量的可能取值及其概率分布的描述称为()。A、概率分布B、随机变异C、随机变量D、数学期望

下列关于随机变量的数学期望的表述中正确的是()。A、它又称为随机变量的均值B、它表示该随机变量所有可能取值的平均水平C、它度量的是随机变量的离中趋势D、任一随机变量都存在一个有限的数学期望E、它与加权算术平均数的不同之一是它以概率或分布密度为权数

随机变量X的概率分布如:f(X)=X/6X=1,,2,3。则X的数学期望是()A、0.333B、0.500C、2.000D、2.333

设随机变量X与Y相互独立,它们分别服从参数λ=2的泊松分布与指数分布.记Z=X-2Y,则随机变量Z的数学期望与方差分别等于().A、1,3B、-2,4C、1,4D、-2,6

单选题将离散型随即变量的全部可能取值极其对应概率列举出来,即为离散型随机变量的()A期望B概率分布C方差D均值

多选题下列关于随机变量的数学期望的表述中正确的是()。A它又称为随机变量的均值B它表示该随机变量所有可能取值的平均水平C它度量的是随机变量的离中趋势D任一随机变量都存在一个有限的数学期望E它与加权算术平均数的不同之一是它以概率或分布密度为权数

问答题简述随机变量数学期望和方差的性质。

单选题期望值是指()。A随机事件的各种变量与相应概率的加权平均值B随机变量取值与数学期望离差的平方和的平方根C随机变量标准差与数学期望的比值