单选题设A是m×n矩阵,A以列分块,记A=(α1,α2,…,αn),在A中划去第i列得到的矩阵记为B,B=(α1,αi-1,αi+1,…,αn),则r(A)=r(B)是αi可以由B的列向量线性表示的( ).A充分条件B必要条件C充要条件D既不充分又不必要条件
单选题
设A是m×n矩阵,A以列分块,记A=(α1,α2,…,αn),在A中划去第i列得到的矩阵记为B,B=(α1,αi-1,αi+1,…,αn),则r(A)=r(B)是αi可以由B的列向量线性表示的( ).
A
充分条件
B
必要条件
C
充要条件
D
既不充分又不必要条件
参考解析
解析:
若r(A)=r(B),则B的列向量组的极大线性无关组也是A的列向量组的极大线性无关组,而αi不在其中,故αi可以由B的列向量的极大线性无关组线性表示.
反之,若αi可以由B的列向量组线性表示,且A是其余列向量也可以由B是列向量组线性表示,故A是列向量组与B的列向量组等价,故r(A)=r(B).
若r(A)=r(B),则B的列向量组的极大线性无关组也是A的列向量组的极大线性无关组,而αi不在其中,故αi可以由B的列向量的极大线性无关组线性表示.
反之,若αi可以由B的列向量组线性表示,且A是其余列向量也可以由B是列向量组线性表示,故A是列向量组与B的列向量组等价,故r(A)=r(B).
相关考题:
没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。 A.A的秩等于nB.A的秩不等于0C.A的行列式值不等于0D.A存在逆矩阵
设n行n列的下三角矩阵A已压缩到一维数组B[1...n(n+1)/2]中,若按行为主序存储,则A[i,j]对应的B中存储位置为(48)。A.i(i-1)/2+jB.j(j-1)/2+iC.i(i+D)/2+jD.j(j+1)/2+i
设矩阵A是一个n*n对称矩阵.即A[i,j]=A[i,j],为了节省存储空间,将其下三角部分按行序为主序存放在一维数B[1...n(n+1)/2)中,对任一下三角元素aij(i>=j),在一维数组 B的下标位置k的值是( )。A.(i+(i-1))/2+j-1B.i(i-1)/2+jC.i(i+1)/2+-1D.i(i+1)/2+j
已知有一维数组A(0..m*n-1],若要对应为m行、n列的矩阵,则下面的对应关系(4)可将元素A[k](0≤k<m*n)表示成矩阵的第i行、第j列的元素(0≤i<m,0≤j<n)。A.i=k/n,j=k%mB.i=k/m,j=K%mC.i=k/n,j=k%nD.i=k/m,j=k%n
设A是n*n常数矩阵(n>1),X是由未知数X1、X2、…、Xn组成的列向量,B是由常数b1、b2、…、bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是______。A.A的秩等于nB.A的秩不等于0C.A的行列式值不等于0D.A存在逆矩阵A.B.C.D.
设有一个m行n列的矩阵存储在二维数组A[1..M,1..n]中,将数组元素按行排列,对于A[i,j](1im,ljn),排列在其前面的元素个数为( )。A.i*(n-1)+jB.(i-1)*n+J-1C.i*(m-l)+jD.(i-1)*m+J-1
设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。A、矩阵A的任意两个列向量线性相关B、矩阵A的任意两个列向量线性无关C、矩阵A的任一列向量是其余列向量的线性组合D、矩阵A必有一个列向量是其余列向量的线性组合
已知有一维数组A[0.m×n-1],若要对应为m行n列的矩阵,则下面的对应关系(),可将元素A[k](O≤<k≤<m×n)表示成矩阵的第i行、第j列的元素(0≤i≤m,0匀≤n)。 A. i=k/n,j=k%mB.i=k/m,j=k%mC.i=k/n,j=k%nD.i=k/m,j=k%n
设有一个m行n列的矩阵存储在二维数组A[1..M,1..n]中,将数组元素按行排列,对于A[i,j](1≤i≤m,l≤j≤n),排列在其前面的元素个数为( ).A.i*(n-1)+jB.(i-1)*n+J-1C.i*(m-l)+jD.(i-1)*m+J-1
设二维数组A[1..m,1..n](即m行n列)按行存储在数组B[1..m*n]中,则二维数组元素A[i,j]在一维数组B中的下标为()。A、(i-1)*n+jB、(i-1)*n+j-1C、i*(j-1)D、j*m+i-1
单选题设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是( ).A向量组α1,α2,…,αm可以由β1,β2,…,βm线性表示B向量组β1,β2,…,βm可以由α1,α2,…,αm线性表示C向量组α1,…,αm与向量组β1,…,βm等价D矩阵A=(α1,…,αm)与矩阵B=(β1,…,βm)β)m
单选题设A为m×n矩阵,则齐次线性方程组Ax=0有非零解的充分必要条件是( )。[2017年真题]A矩阵A的任意两个列向量线性相关B矩阵A的任意两个列向量线性无关C矩阵A的任一列向量是其余列向量的线性组合D矩阵A必有一个列向量是其余列向量的线性组合
单选题没A是n*n常数矩阵(n1),X是由未知数X1,X2,…,Xn组成的列向量,B是由常数b1,b2,…,bn组成的列向量,线性方程组AX=B有唯一解的充分必要条件不是()。AA的秩等于nBA的秩不等于0CA的行列式值不等于0DA存在逆矩阵
单选题设二维数组A[1.. m,1.. n](即m行n列)按行存储在数组B[1.. m*n]中,则二维数组元素A[i,j]在一维数组B中的下标为()。A(i-1)*n+jB(i-1)*n+j-1Ci*(j-1)Dj*m+i-1
单选题设n维列向量组α(→)1,α(→)2,…,α(→)m(m<n)线性无关,则n维列向量组β(→)1,β(→)2,…,β(→)m线性无关的充分必要条件是( )。A向量组α(→)1,α(→)2,…,α(→)m可以由β(→)1,β(→)2,…,β(→)m线性表示B向量组β(→)1,β(→)2,…,β(→)m可以由α(→)1,α(→)2,…,α(→)m线性表示C向量组α(→)1,α(→)2,…,α(→)m与向量组β(→)1,β(→)2,…,β(→)m等价D矩阵A=(α(→)1,α(→)2,…,α(→)m)与矩阵B=(β(→)1,β(→)2,…,β(→)m)等价
单选题设向量组I:α(→)1,α(→)2,…,α(→)m,其秩为r;向量组II:α(→)1,α(→)2,…,α(→)m,β(→),其秩为s,则r=s是向量组I与向量组II等价的( )。A充分非必要条件B必要非充分条件C充分必要条件D既非充分也非必要条件
单选题设A是m×n矩阵,则mA必要条件B充分条件C充要条件D以上都不对